Вакуум (вакуумное состояние)
– в квантовой физике представляет собой «физический вакуум» как основное состояние с минимальной энергией, нулевыми импульсом, угловым моментом, электрическим зарядом и другими квантовыми числами квантованных полей. В математической физике используется понятие «математического вакуума», определяемого как состояние, в котором отсутствуют какие-либо реальные частицы и действие на который операторов уничтожения дает нулевой результат. По современным представлением вакуум перенаселен виртуальными частицами, участвующими в виртуальных процессах, проявляющихся в специфических эффектах взаимодействия с реальными частицами.Виртуальные частицы —
сверхкороткоживущие микрочастицы, возникающие и исчезающие в флуктуациях соответствующих квантовых полей. Чаще всего в физическом вакууме рождаются и исчезают гамма-кванты и электрон-позитронные пары.Гамма-излучение
– сверхкоротковолновое электромагнитное излучение с чрезвычайно малой длиной волны ( 5x10-3 нм) и, вследствие этого, ярко выраженными корпускулярными и слабовыраженными волновыми свойствами. Гамма-кванты электромагнитного поля представляют собой фотоны с высокой энергией. На электромагнитной шкале волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. Гамма-излучение испускается при переходах между возбужденными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т. д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях.Гамма-излучение было открыто французским физиком Полем Виллардом в 1900 г. при исследовании излучения радия.
Гамма-распад – ядерный процесс, при котором возникает гамма-излучение. Гамма-кванты могут испускаться (поглощаться) атомными ядрами при переходах из одного квантового состояния в другое, при превращениях элементарных частиц, торможении заряженных частиц высокой энергии, синхротронном излучении.
Камера Вильсона
– измерительное устройство, сконструированное в 1912 г. шотландским физиком Чарльзом Томсоном Риз Вильсоном для исследования заряженных частиц. Действие камеры основано на использовании явления конденсации пересыщенного пара в виде мельчайших капель жидкости на различных центрах конденсации, которыми могут служить ионы, образующиеся вдоль следов – треков заряженных частиц. Подобные следы хорошо видны и могут быть легко сфотографированы. Исследования в камере могут проводиться с искусственным и естественным радиационным фоном с использованием внутрикамерных источников и естественных потоков радиации, таких как ливни космических частиц, попадающие в камеру через прозрачную мембрану. Природа и свойства исследуемых частиц устанавливаются по их пробегу в скрещенных магнитных полях. Для исследования малоэнергетичных частиц камеру вакуумируют, а для высокоэнергичных, наоборот, заполняют газом при повышенном давлении иногда в десятки атмосфер. Камера Вильсона сыграла важную роль в изучении радиации, будучи на протяжении десятилетий практически единственным методом регистрации потоков и ливней самых различных излучений. Однако впоследствии камера Вильсона уступила свое место искровым и пузырьковым камерам.Квантовая механика
– область физики, изучающая свойства и поведение атомов и субатомных частиц. Квантовая (волновая) механика основывается на корпускулярно-волновом дуализме и принципе неопределенности, объясняя и корпускулярные, и волновые свойства микромира. Любая квантово-механическая система описывается комплексной волновой функцией, фаза и амплитуда которой полностью определяют ее состояние. При этом аппарат квантовой теории позволяет естественным образом рассматривать волновые явления интерференции и дифракции элементарных частиц. Вероятность найти любую микрочастицу в определенном состоянии определяется квадратом модуля волновой функции. Отличие квантовой механики от классической физики состоит в том, что вероятность локализации микрочастицы не полностью определяет ее состояние. Для полного описания состояния квантового микрообъекта необходимо вычислить комплексную вероятность как волновую функцию.Корпускулярно-волновой дуализм —
один из основополагающих квантовых принципов, согласно которому любой микрообъект одновременно обладает волновыми и корпускулярными свойствами. При измерениях, в зависимости от их характера, проявляются либо та, либо иная сторона объекта.