Читаем Цифровая электроника для начинающих полностью

delay(500);

digitalWrite(led, LOW);

delay(500);

digitalWrite(led, HIGH);

delay(500);

digitalWrite(led, LOW);

delay(500);

digitalWrite(led, HIGH);

delay(2000);

digitalWrite(led, LOW);

delay(2000);

}

Не нужно ни пайки, ни какой-либо перенастройки, все делается чисто программно.

Кстати, зачем нужен вызов функции delay? Все просто, без нее программа тоже будет работать - но светодиод будет переключаться со скоростью тысячи раз в секунду, что будет неразличимо глазом. Тактовая частота процессора составляет несколько мегагерц, и без пауз программа будет работать слишком быстро.

Можно ли подключить светодиод к другому выводу, или подключить несколько светодиодов? Разумеется, можно. Для этого нужно найти инструкцию к плате, где будут указаны номера выводов (номера подписаны и на самой плате). Для Arduino Uno такая схема выглядит примерно так:

Далее, достаточно подключить к нужному выводу (например это может быть пин “10”) светодиод, не забыв и ограничительный резистор. Вторым выводом будет общий вывод, или GND (это аналог вывода “-” в схеме с батарейкой из первой части книги). На плате несколько выводов GND, можно использовать любой из них, они соединены вместе.

Схема целиком на макетной плате будет выглядеть так:

Разумеется, текст кода тоже придется изменить, поменяв номер вывода с 13 на 10.

Самостоятельная работа #1: Замедлить скорость мигания светодиодов до 5-10с. Тестером померять напряжение на выходе Arduino, и убедиться что оно изменяется от 0 до 5В с соответствующей частотой.

Самостоятельная работа #2: подключить 2-3 дополнительных светодиода, каждый через свой токоограничительный резистор. Добавить код для их переключения, можно также поэкспериментировать с различными световыми эффектами (поочередное или параллельное мигание и пр).

2.4 Мигаем светодиодом: широтно-импульсная модуляция

В первой части мы уже рассматривали изменение яркости светодиода с помощью ШИМ - широтно-импульсной модуляции. Там мы использовали таймер NE555, чтобы создать напряжение такого вида:

То же самое легко запрограммировать с помощью контроллера. Напишем программу, которая будет плавно повышать яркость светодиода от нуля до максимума.

int led = 13;

int pwm = 0;

void setup() {

pinMode(led, OUTPUT);

}

void loop() {

for(int i=0; i<1000; i++) {

digitalWrite(led, HIGH);

delayMicroseconds(pwm);

digitalWrite(led, LOW);

delayMicroseconds(100 - pwm);

}

pwm += 1;

if (pwm > 100) pwm = 0;

}

Мы создали глобальную переменную pwm, в которой сохраняется текущее значение уровня заполнения в процентах. Дальше мы включаем “высокое” и “низкое” состояние вывода, в соответствии с этим значением - когда одно значение велико, второе, наоборот, мало. Цикл “for(int i=0; i<1000; i++)” повторяет участок кода 1000 раз - без него светодиод менял бы яркость слишком быстро.

Если загрузить этот код, мы увидим плавно увеличивающий яркость светодиод. Но у вышеприведенного кода есть недостатки. Во-первых, он довольно-таки громоздкий - слишком много строк для переключения только одного вывода. Во-вторых, процессор занят только переключением светодиода, любая другая задача нарушит согласованность временных интервалов. К счастью для нас, разработчики процессора пошли навстречу пользователям, и формирование ШИМ может выполняться автоматически, на аппаратном уровне. Для этого достаточно использовать функцию analogWrite, в качестве параметра указав степень заполнения в виде параметра 0..255.

Например, для установки яркости 50% достаточно написать:

analogWrite(led, 128);

Процессор сам сделает все остальное, и сформирует на выходе нужный сигнал. Наш код в это время может делать что-то другое, например выводить информацию на ЖК-экран. Единственное ограничение - режим ШИМ может работать не на всех выводах, это определяется моделью процессора. Например, для Arduino Uno для ШИМ доступны только номера выводов 3, 5, 6, 9, 10, и 11.

Разумеется, с помощью ШИМ управлять можно не только яркостью одного светодиода, но и более мощной нагрузкой постоянного тока (лампа, светодиодная лента и пр), подключив ее через транзистор.

Самостоятельная работа: переписать вышеприведенную программу с использованием analogWrite. Проверить работоспособность, подключив светодиод с резистором к соответствующему выводу.

2.5 Вывод данных через Serial port

В простых случаях можно понять, что делает программа, просто посмотрев на ее текст. Но увы, так бывает далеко не всегда. Более сложные платы, например STM32, имеют специальный разъем для программирования, позволяющий не только загружать программы, но и задавать точки останова, просматривать значения переменных, выполнять программу по шагам. На Arduino такой возможности нет, зато есть возможность вывода данных через “последовательный порт”.

На старых компьютерах были такие порты, называемые COM и LPT. Разумеется, физически отдельного COM-порта на Arduino нет. Его роль играет микросхема FTDI, создающая виртуальный порт при подключении платы по USB.

Еще раз посмотрим в правый нижний угол Arduino IDE.

Перейти на страницу:

Похожие книги

GPS: Все, что Вы хотели знать, но боялись спросить
GPS: Все, что Вы хотели знать, но боялись спросить

Определение своего положения с помощью GPS навигатора, отдельного прибора, или устройства, встроенного в карманный компьютер или сотовый телефон, уже стало совершенно обычной вещью.Постепенно столь же привычным становится определение положения объекта с помощью систем телематики на основе GPS/GSM/GPRS, когда на мониторе компьютера или экранчике сотового телефона можно увидеть участок карты с отметкой, где находится другой человек или его автомобиль.«GPS» — это первые буквы английских слов «Global Positioning System» — глобальная система местоопределения. GPS состоит из 24 искуственных спутников Земли, сети наземных станций слежения за ними и неограниченного количества пользовательских приемников-вычислителей. «GPS» предзначенна для определения текущих координат пользователя на поверхности Земли или в околоземном пространстве.По радиосигналам спутников GPS-приемники пользователей устойчиво и точно определют текущие координаты местоположения. Погрешности не превышают десятков метров. Этого вполне достаточно для решения задач НАВИГАЦИИ подвижных объектов (самолеты, корабли, космические аппараты, автомобили и т.д.).Как и многие многоцелевые вещи в нашем быту, приемник системы глобального позиционирования (GPS) по мере знакомства с ним обнаруживает массу полезных свойств, даже сверх тех, для которых он был приобретен первоначально. Оказывается существует много любопытных вопросов, на который он с легкостью отвечает, — например, какую скорость вы развиваете при ходьбе, какое расстояние вы преодолеваете при занятии бегом и с какой максимальной и средней скоростью, какую скорость вы развили, спускаясь с горы на лыжах, насколько точен спидометр вашего автомобиля и т. д. Однако основное его назначение — определение координат.

Б. К. Леонтьев , Борис Константинович Леонтьев

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов / Компьютерное «железо» / Книги по IT
Wi-Fi: Все, что Вы хотели знать, но боялись спросить
Wi-Fi: Все, что Вы хотели знать, но боялись спросить

Жизнь современного человека — это движение. Мобильность для нас становится одним из самых важных моментов для работы, для общения, для жизни. Многие из нас сейчас уже не представляют жизнь без сотовых телефонов, которые из средства роскоши превратились в предмет, без которого жизнь современного человека стала просто немыслима. Многие уже оценили все преимущества Bluetooth, GPRS. Эти устройства превратили наши телефоны из средств связи в незаменимых помощников в работе. К сожалению, один из самых главных недостатков этих беспроводных технологий — малый радиус действия и низкая скорость передачи данных, что сейчас становится очень важным фактором для всех нас. Поэтому к нам на помощь приходит активно развивающийся во всем мире и в России стандарт Wi-Fi. Особенно радует, что в крупных городах России, особенно в Москве и Санкт-Петербурге, начинается массовое внедрение беспроводных сетей Wi-Fi в публичных местах (так называемых Hot Spot) — отелях, аэропортах, ресторанах, торговых центрах и кафе.Что же такое Wi-Fi? Очередной мыльный пузырь IT-индустрии, который изо всех сил надувают производители и поставщики телекоммуникационного оборудования или новая технология, призванная в очередной раз изменить наш привычный мир, как это случилось когда-то с появлением Интернет и сотовой связи?

А К Щербаков , А. К. Щербаков

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов / Интернет / Компьютерное «железо» / Книги по IT
Аппаратные интерфейсы ПК
Аппаратные интерфейсы ПК

Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.

Михаил Юрьевич Гук

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов