Читаем Цифровая стеганография полностью

Определим величину скрытой ПС стегосистемы, в которой алфавит скрываемых сообщений, контейнеров, ключей и стего является двоичным алфавитом . Пусть контейнер формируется источником Бернулли, то есть символы последовательности контейнера являются независимыми друг от друга и равновероятными. Функция искажения описывается расстоянием Хэмминга: , если и в ином случае. Описание контейнера является секретным ключом стегосистемы () и известно декодеру. Пусть двоичная последовательность формируется независимо и равновероятно. Стегограммы формируются в виде , где операция есть суммирование по модулю 2. Переменная Z имеет бернуллиевское распределение и отображает скрываемое сообщение M с искажением . Искажение означает, что каждый символ двоичной последовательности Z отличается от соответствующего символа двоичной последовательности M с вероятностью . Преобразование сообщения M в последовательность Z выполняется скрывающим информацию с использованием кодера с искажением. Нарушитель обрабатывает стего наложением на него двоичной шумовой последовательности , в которой единичный символ порождается с вероятностью . Получатель суммирует искаженное стего с двоичной последовательностью по модулю 2, и из полученной таким образом двоичной последовательности декодирует принятое скрываемое сообщение . Особенностью этой стегосистемы является то, что в ней скрываемое сообщение при встраивании искажается с вероятностью искажения и это искажение равно искажению кодирования стего. Такая стегосистема показана на рис. 3.3.

Рис. 3.3. Структурная схема двоичной стегосистемы


Утверждение 3.5: Для двоичной стегосистемы при величинах искажений скрытая ПС определяется в виде


, (3.13)


где, по определению, , и .

Оптимальная атака нарушителя определяется в виде , где есть случайная двоичная последовательность, распределенная по бернуллиевскому закону с вероятностью появления единичного символа . Для и скрытая ПС равна . Для и , скрытая ПС равна .

Опишем распределения переменных стегосистемы, при которых достигается такая величина скрытой пропускной способности. Для данной стегосистемы переменную U можно формировать как U = X или U = Z, причем оба варианта выбора могут быть оптимальны, так как в качестве операции встраивания используется операция суммирования по модулю 2.

Для и скрытая ПС равна . Заметим, что на первый взгляд удивительно, что при скрытая ПС не равна нулю независимо от значения . Это объясняется тем, что при преобразовании скрываемого сообщения M в последовательность искажение не является равновероятным: скрывающий информацию может выбрать такое распределение ошибок , при котором минимизируется изменение сообщения M. Для скрытая ПС равна нулю при любых значениях . Нетрудно заметить, что при выход канала связи не зависит от его входа X, что означает обрыв канала связи. И если при обрыве канала связи не передается никакой информации по открытому каналу связи, то тем более не передается по скрытому каналу, образованному на основе открытого канала.

Применим следствие 3.4 для анализа двоичной стегосистемы. Мы должны проверить, что распределения для и имеют седловую точку платежа . Сначала зафиксируем . Полагая , получим

где равенство (а) справедливо в соответствии с определением условной взаимной информации, (b) выполняется благодаря тому, что есть марковская цепь, неравенство (с) справедливо, так как условие уменьшает энтропию. Равенство достигается в (с) если и только если , следовательно, независима от . Неравенство (d) справедливо, так как Z и W независимы в силу того, что формируют марковскую цепь и . Равенство достигается, если переменная Z имеет бернуллиевское распределение с дисперсией . Распределение удовлетворяет обоим неравенствам с равенством и поэтому максимизирует значение

Второй шаг заключается в фиксации и минимизации над . При определенном ранее распределении , и независимы. Так как формирует марковскую цепь,  и также независимы.

Мы имеем

,

где неравенство (а) справедливо, так как условие уменьшает энтропию, и неравенство (b) справедливо потому, что Z и W независимы и , которое становится равенством, если W — переменная с бернуллиевским распределением с вероятностью единичного символа .

Перейти на страницу:

Все книги серии Аспекты защиты

Похожие книги