В 2011 году корпорация Lockheed Martin, гигант военно-промышленного комплекса США, объявила о приобретении 128-кубитной машины D-Wave за 10 миллионов долларов. Можно было бы предположить, что покупка совершена из любопытства, однако история на этом не закончилась.
В марте 2013 года в Lockheed Martin решили купить следующую модель квантового компьютера D-Wave. Первая покупка не просто удовлетворила интерес компании — она доказала свою полезность. Получается, в обещаниях D-Wave всё же есть доля правды?
В D-Wave в итоге пошли на попятную и опубликовали пару научных работ о своей машине. Попутно стало ясно, что это, во-первых, не квантовый компьютер в самом распространённом понимании этого слова, а во-вторых, кубиты, о которых идёт речь в рекламе компании, строго говоря, не вполне кубиты.
В основе машины D-Wave лежит охлаждённая до -273 градусов по Цельсию микросхема с решёткой, построенной из сверхпроводящих квантовых интерферометров. Именно их в компании называют кубитами. Значение кубитов D-Wave, как и значение кубитов в настоящем квантовом компьютере, может быть неопределённым, однако они не связаны между собой с помощью квантовой запутанности.
Машина D-Wave не годится для алгоритмов, которые используют квантовые вентили. Ни алгоритм Шора, ни алгоритм Гровера на ней не пойдут. Вместо этого она использует для работы совершенно иной принцип — так называемые адиабатические квантовые вычисления. Это значительно ограничивает её возможности, но позволяет не беспокоиться о декогеренции и других проблемах, сопровождающих обычные квантовые вычислители.
Адиабатические квантовые компьютеры представляют собой специализированные устройства, предназначенные для решения единственной задачи: поиска оптимального решения функции, которая определена энергетическим состоянием всех кубитов вместе. Выполнять операции над отдельными кубитами они не способны, но в данном случае этого и не требуется.
Эта оптимизационная задача имеет на удивление много реальных применений. В D-Wave использовали своё устройство для фолдинга белков, в Google учили его распознавать образы, а в Lockheed Martin приспособили машину для верификации критически важного программного обеспечения.
Существующие устройства D-Wave не делают ничего непосильного для обычных компьютеров, но, похоже, это вопрос времени: следующие модели, если верить обещаниям техдиректора компании, будут достаточно мощны, чтобы развеять сомнения скептиков. Впрочем, независимо от того, чем закончится дело, за D-Wave интересно наблюдать. Эта компания прокладывает путь, по которому когда-нибудь пойдут другие.
Как взломать самолёт с помощью смартфона — и почему это вообще стало возможным?
Когда минувшей зимой мне довелось писать про «кибернетическое 11 сентября
» (воображаемый крупный террористический акт, организованный посредством эксплуатации уязвимостей в гражданских ИТ-системах), главным контраргументом против возможности такого события была независимость критической коммунальной инфраструктуры от компьютеров. Проще говоря, утопить несколько многоэтажек в кипятке, вломившись на «сервер» насосной станции и открыв задвижки с горячей водой, не получится — не потому даже, что кипяток по команде компьютера на улицы, скорее всего, не польётся, а уже по причине отсутствия самого такого сервера. Однако с тех пор практика подкинула несколько интересных примеров, которые склоняют весы в этом споре в пользу сторонников «киберапокалипсиса». Последний появился буквально на днях. Хоть краем уха, но вы наверняка уже слышали, что испанский спец по кибербезопасности Хьюго Тесо продемонстрировал перехват управления авиалайнером с помощью обычного смартфона. Самое вкусное в этой истории — детали, которыми автор щедро делился на security-конференции HITBSecConf.Тесо — ещё и профессиональный пилот. Так что дорожка в цифровые недра самолёта для него была предначертана. И три года назад он задался целью доказать, что и маленькая Cessna, и огромный Airbus могут стать игрушкой в руках подготовленного чёрного хакера. Перебрав доступные варианты, Хьюго остановился на трёх ключевых «железках», присутствующих сегодня во многих самолётах гражданской авиации. Первая из них — приёмник-передатчик ADS-B («автоматического зависимого наблюдения-вещания»).