Производители дисплеев высокой чёткости тоже стремятся достичь подобного эффекта и делают их вогнутыми. Впрочем, пока это скорее эксперимент, чем направление развития.
Среди сильных сторон 4K мониторов выделяется даже не целостность и удобство подключения, а максимальная детальность изображения. Если у большинства мониторов с разрешением FullHD плотность расположения пикселей составляет 96 PPI, то у дисплеев стандарта 4K она в полтора раза больше и начинается от 140 PPI для тридцатидюймовых моделей. Разглядеть отдельные пиксели невооружённым глазом будет трудно даже с очень близкого расстояния.
В течение года производители представят и другие модели сверхвысокого разрешения, продолжая уменьшать площадь экрана. Осенью ожидается выход монитора Panasonic BT-4LH310 с диагональю 31 дюйм и разрешением 4096×2160. На очереди ещё более компактные модели. Однако больше – не всегда лучше. Отрицательные стороны увеличения пиксельной плотности мы уже наблюдаем на экранах планшетов и ноутбуков.
Нейроэлектронный интерфейс как ступенька к бессмертию: кто этим занимается и чего добились?
Согласитесь, при всей щедрости, с какой последние тридцать лет судьба преподносит технологические сюрпризы, нам редко доводится бывать в ситуациях, когда бы мы точно знали: нечто, о чём мечталось десятилетиями, если не веками, станет возможным уже в следующие несколько лет. Минувшая весна поставила нас перед таким приятным фактом в направлении нейроэлектронного интерфейса. И попутно обозначила практическую осуществимость (или, по крайней мере, возможность проверки) идеи совершенно фантастической: бессмертия человеческого существа. Ниже я набросаю цепочку из трёх звеньев — и хотя местами она выглядит нереально, призываю вас при чтении помнить одно: два из этих звеньев уже воплощены в лабораториях, а третье, получается, становится теперь делом ближайшего будущего.
Начать стоит с истории, которую вы наверняка слышали ещё в марте. 28 февраля журнал Nature опубликовал статью группы исследователей из США и Бразилии (есть там и одно русское имя), посвящённую вопросу передачи сенсомоторной информации через электронный «мостик», перекинутый между головами двух живых существ. Несколько упрощая, описываемую серию экспериментов можно свести к следующей схеме. В качестве подопытных были задействованы две белых крысы. В кору головного мозга каждой из них в одинаковых местах были вживлены матрицы электродов таким образом, что нервные импульсы, генерируемые первой крысой, после обработки цифровым устройством и передачи по цифровому каналу (фактически компьютером и Интернет), транслировались в мозг второй.
После этого первую крысу — назовём её генератором импульсов, или (по терминологии авторов) энкодером, — заставляли решать простую задачку: её ставили перед двумя идентичными кормушками, содержимое которых крысе было не видно, и учили тыкаться в ту, над которой загоралась лампочка. В это время её напарница — «декодер» — сидела в идентичной клетке с двумя кормушками и должна была сделать аналогичный выбор, с той лишь разницей, что лампочек над кормушками не было. Иначе говоря, крысе-декодеру не давалось никаких визуальных подсказок. И тем не менее в статистически достоверном проценте опытов она выбирала правильную кормушку.
Налицо факт трансляции информации из мозга в мозг. И не просто трансляции. Авторы утверждают, что эксперимент служит подтверждением практической возможности построения нейроэлектронной сети, участники которой напрямую обмениваются, обрабатывают и сохраняют информацию. То есть образуют биологическую вычислительную систему. Органический компьютер.
Но обождите фантазировать. Встречайте эксперимент номер два, поставленный сотрудниками DARPA. Его лучше всего видеть самому, поэтому вот ролик, в котором солдат с электромеханическим протезом вместо ампутированной руки проявляет чудеса ловкости: поднимает и манипулирует небольшими объектами, хватает их на лету. В это было бы невозможно поверить, если бы камера не зафиксировала этого на самом деле.