Мы находим маховик везде, от гончарного круга и примитивных водяных насосов до транспортных средств XX века и космических гироскопов. Как аккумулятор энергии он замечателен тем, что его можно быстро разогнать («зарядить») и быстро же остановить (получив значительную мощность «на выходе»). Одна проблема: энергоёмкость его недостаточна, чтобы претендовать на роль универсальной «энергетической капсулы». Плотность запасаемой энергии необходимо увеличить хотя бы в сотню раз. Но как это сделать? Увеличим скорость — маховик разорвёт и запасённая энергия причинит страшные разрушения. Наращивать габариты тоже не всегда возможно. Пропуская многолетний, интереснейший пласт исследований и размышлений (очень рекомендую книгу, читается и сегодня совершенно современно!), собственно вклад Гулиа можно свести к следующему: он предложил делать маховик не монолитным, а навивать — например, из стального троса или ленты. Возрастает прочность, низводятся до ничтожных последствия разрыва, а энергоёмкость даже самодельных образцов превышает параметры промышленных разработок. Эту конструкцию он и назвал супермаховиком (и запатентовал один из первых вариантов ещё в 1964-м).
Прорабатывая идею, он пришёл к мысли навивать маховик из графитового волокна (не забывайте, что фуллерены тогда только получили, а о графене и речи не шло), а то и более экзотических материалов вроде азота. Но даже 20-килограммовый супермаховик из углеродных волокон, технически возможный уже тогда, тридцать лет назад, был способен запасти энергию, достаточную для передвижения легкового автомобиля на 500 километров, со средней стоимостью стокилометрового броска в 60 американских центов.
В случае с супермаховиками нет смысла возиться со сравнительными оценками — будь то запасаемая на единицу массы энергия или эксплуатационные характеристики: теоретически они превосходят все имеющиеся альтернативные решения. И области применения напрашивались сами собой. Помещённый в вакуум, на магнитной подвеске, с КПД выше 90%, выдерживающий невообразимое число циклов заряда-разряда, способный работать в широчайших диапазонах температур, супермаховик способен вращаться годами и обещал фантастические вещи: автомобиль от одной зарядки мог бы бегать тысячи километров, а то и весь срок службы, электростанция с упрятанным в фундамент многосотметровым супермаховиком запасала бы энергию, достаточную для освещения всей Земли, и так далее, и так далее. Но вот вопрос: прошло тридцать лет, почему мы же не видим супермаховиков вокруг себя?
Сказать по правде, я не знаю ответа. Технические сложности? Да, и конструкция супермаховика, и плавный отбор энергии — задачи с большой буквы, но они вроде бы решены. Время от времени слышно о мелких, узконишевых применениях. Но именно там, где на него возлагались главные надежды — в энергетике и автомобилестроении — супермаховик массового применения не нашёл. Пару лет назад американская компания Beacon Power ввела в строй небольшую супермаховичную энергоаккумулирующую станцию под Нью-Йорком, но сегодня о проекте ничего не слышно, а сама компания перебивается с хлеба на воду.
Нурбей Гулиа по-прежнему работает над совершенствованием своего детища и год назад почему-тоотметился сообщением о возможности постройки графенового супермаховика (с расчётной удельной энергоёмкостью 1,2 кВт*ч/кг, то есть на порядок выше литий-ионных аккумуляторов). Но, если я правильно понимаю, коммерческого успеха он добился с другой своей разработкой (супервариатором, оригинальной механической передачей), а вот супермаховик остаётся под знаком вопроса.
P.S. Я попросил Нурбея Владимировича поучаствовать в дискуссии (хоть надежда, сами понимаете, слабая: на личном сайте его натурально одолевают поклонники).
Новые бионические протезы будут передавать тактильные ощущения
Команда исследователей из Чикагского университета и Университета Джонса Хопкинса разрабатывает протез руки, через который можно было бы получать настоящие тактильные ощущения от прикосновения к любым поверхностям и чувствовать их температуру.
За последние пятнадцать лет появилось множество новых прототипов различных протезов, которые из-за их высокого технологического уровня и принципов работы стали называть бионическими. Одни модели обладают невероятными степенями свободы за счёт наличия более двух десятков искусственных суставов и позволяют двигать каждым пальцем по отдельности. Другие управляются мысленными командами через интерфейс «мозг — компьютер» почти таким же образом, как и собственные конечности. Стать более полноценной заменой всем им мешает общий недостаток — невозможность осязать.