В чём главный недостаток эмуляции? Она предполагает изучение устройства методом обратного инжиниринга. А это означает, что даже в лучшем случае оригинал будет воспроизведён с ограниченной точностью: мелкие «баги», забытые аппаратные особенности не будут обнаружены и учтены. Следовательно, массовые эмуляторы (QEMU и пр.) для цифрового сохранения не годятся. Чтобы воссоздать цифровое устройство точно, нужно выйти на уровень электронных элементов: резисторов, транзисторов, микросхем. Можно ли эмулировать их работу? Можно, и это давно делается, разве что называется уже не эмуляцией, а симуляцией (то есть точным воспроизведением). Приложений масса, в том числе и свободных, но затраты вычислительных ресурсов так высоки, что, насколько мне известно, никто пока таким образом старые компьютеры не воссоздаёт.
Редкие исследователи, пробовавшие задачу эмуляции с исторической точностью на зуб, подошли к ней с другой стороны. Они предпочли усовершенствовать обычные эмуляторы, сделав их более гибкими. Примером может служить проект Dioscuri — первый эмулятор x86-систем, разработанный с прицелом именно на цифровое сохранение. Идея вкратце в том, чтобы воссоздать эмулируемое устройство максимально точно за счёт написания отдельного модуля для каждого из компонентов устройства; центральный процессор, память, графический адаптер, BIOS и прочее: за каждый из них в Dioscuri отвечает свой модуль. Это по-прежнему не идеально, но уже ближе к цели.
Что дальше? Рост вычислительной мощности на порядок (если только успеем до окончания действия закона Мура!), вероятно, позволит эмулировать старые устройства на уровне элементов. Но, к сожалению, и здесь мы быстро упрёмся в стену — потому что даже микропроцессоры 80-х, уж конечно, никто и никогда не «разберёт»: снимать слой за слоем, изучая их под микроскопом, слишком трудно, а публиковать исходники производители, скорее всего, не пожелают по причине упрямства — как упрямятся до сих пор публиковать фирменные прошивки игровых компьютеров тридцатилетней давности. И, получается, однажды мы неизбежно потеряем значительную часть цифрового наследия. Грустно, но что поделаешь?
Кремниевые нейросети для «умных» машин
«Умные» машины, телесные и бестелесные, окружают нас во всё большей степени. В квартире — пылесос, на складе — погрузчик, в смартфонах — голосовой помощник Siri. Но для того, чтобы машины эти стали подлинно умными, им необходимо обзавестись инженерным аналогом достаточно мощного головного мозга. Причём для решения не только тех задач, которые принято связывать с человеческим интеллектом, но и тех, с которыми справляются животные, и не обязательно высшие. И вот теперь решение этой проблемы переходит в практическую плоскость.
Сначала несколько слов о мощностях нынешних компьютеров в их мобильном обличье. Как отмечают читатели, процессор смартфонов ARM Cortex выдаёт 1,5–2 гигафлопс, ну а тот ENIAC, что позволил технологии в рамках Манхэттенского проекта овладеть внутриядерными силами, мог осилить лишь 500 флопс. И этого хватило для нужд атомной программы… Мощностей же нынешних смартфонов вполне хватает для того, чтобы создать автопилот дрона («Смартфоны даруют мозги дронам»). А вот болтушка Siri зависит в своём функционировании от внешних серверов, из-за чего и впадает порой в длительные паузы…
Парадокс. Для с
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии