Чем замечательна наша наука? Тем, что физика вообще и, в частности, физика высоких энергий, это очень тонко взаимосвязанная система знаний. Потому что явления, связанные с большими энергиями, могут проявляться в относительно низкоэнергитичных процессах. Есть целый класс явлений в природе, где участвуют виртуальные тяжелые частицы, они, как правило, и есть предмет исследования. Часть из них уже известны и открыты, а часть напрямую не наблюдается, потому что они имеют слишком большую массу, недоступную для рождения на коллайдерах высоких энергий. Однако они могут проявляться косвенным образом, за счет виртуальных процессов, когда эти тяжелые частицы проявляют себя в маленьких поправках к основному процессу. И поэтому эксперименты, которые проводятся на низких энергиях (или, лучше сказать, в нижней части области высоких энергий) — это, как правило, очень точные эксперименты. Целый ряд открытий в науке был осуществлен именно при низких энергиях. Не в прямых экспериментах, а в косвенных наблюдениях. Это возможно в тех случаях, когда физический процесс может быть очень точно рассчитан, и отклонения от ожидаемого результата являются целью нашего поиска. Здесь, в ИЯФ (Институт ядерной физики СО РАН), мы не можем построить такую гигантскую установку, как в CERN, поэтому мы идем своим путем: строим относительно небольшие установки, которые имеют новые свойства и позволяют делать прецизионные эксперименты, то есть очень точные, и по результатам этих экспериментов мы стараемся получить новую информацию.
- Я правильно поняла, что эксперименты на таких ускорителях недоступны большим ускорителям?
Да, безусловно. Физика разнообразна, и определенного типа наблюдения возможны только на таких установках. И это вообще основной принцип науки: нам неинтересно повторять измерения, сделанные другими, просто для того чтобы проверить их. Задача науки — искать неизвестное, выходить на грань между понятным и непонятным. Поэтому настоящий исследователь ищет новые возможности, ранее не использованные в научных исследованиях, чтобы получить дополнительные знания.
- Какие есть направления в физике высоких энергий?
Я бы выделил три основных. Первое направление — это Energy Frontier, то есть предельно высокие энергии, такие, как, например, на LHC. Второе — это установки с высокой интенсивностью, тоже коллайдеры, на которых исследуется специальный класс редких явлений при относительно низких энергиях. Отличительная характеристика таких установок — это предельно высокая интенсивность пучков и, следовательно, высокая частота столкновения частиц. И третье направление — это поиск неизвестных нам явлений и частиц, остаточно существующих в природе. Дело в том, что наша Вселенная возникла в результате Большого взрыва. Первое время жизни Вселенной материя существовала в совершенно других условиях. Тогда возникали совсем другие частицы и явления, которые сейчас мы наблюдать не можем. Для наблюдения остатков явлений, произошедших 14 миллиардов лет назад, строят специальные детекторы. Например, мы знаем, что масса наблюдаемого вещества во Вселенной много меньше, чем полная масса Вселенной. То есть во Вселенной есть нечто ненаблюдаемое стандартным способом, но имеющее заметную массу. Мы думаем, что это особые частицы, которые до сих пор не проявлялись в прямом эксперименте, и были порождены в процессе Взрыва, а сегодня остались в виде холодной темной материи. Физики пытаются найти косвенные свидетельства этих частиц. Что это значит? Например, Солнце и Земля движутся во Вселенной, и проходят через газ холодных частиц. Время от времени эти частицы сталкиваются с атомами вещества, за счет отдачи (очень редко) вылетают ядра. Столкновение частиц тяжелой холодной материи с ядерной материей может иметь проявления, например, в виде ионизации, звуковой волны в кристалле и т.д. Экспериментаторы создают детекторы, которые предназначены фиксировать такие слабые проявления.
Так вот, есть три стратегических направления, в которых движется наша наука. ИЯФ участвует во всех, но у себя мы строим установки высокой интенсивности для изучения редких явлений на относительно невысокой энергии; также мы участвуем в экспериментах в CERN на LHC, то есть в экспериментах с предельно доступными энергиями; и участвуем в создании низкофоновых детекторов большой массы для поиска темной матери. Эти же детекторы можно использовать и для изучения солнечных нейтрино.
- А разве природа солнечного нейтрино еще не ясна?