Затем Алан перевел это число в шумерские единицы веса. Мы уже установили, что эти единицы были получены следующим образом: брали одну десятую двойного куша или ячменного кубита (локтя) и изготовляли по этим размерам куб. Для определения веса куб наполняется водой. Масса воды теперь делается шумерской единицей массы — двойным мана. Двойной ман весил 994,4 грамма, так что 5,9979 х 1024 двойного мана составляют массу Земли, что может быть представлено цифрой с последующими 24 нулями. Это число настолько близко к 6 с двадцатью четырьмя нулями после него, что выделяется своей необычностью, особенно если вспомнить, что мы не можем с уверенностью сказать, какова была точная величина двойного куша. Конечно, могло быть совпадение, но остается фактом, что вес мира — только на одну часть, величиной в 2850 шумерских двойных манов, не дотягивает до цифры 6 000 000 000 000 000 000 000 000 шумерских двойных манов.
Мы бы не стали об этом писать, если бы это число не соответствовало столь вызывающе шумеро-вавилонской системе счета с основой 60. Но так заманчиво думать, что эта древняя мера могла иметь отношение к массе Земли, то ли благодаря блестящим расчетам, то ли благодаря какому-то практическому эксперименту, механизм которого остался неизвестным экспериментаторам — или современному нам миру. Больше того, мы знали, что шумеры считали, что в одном двойном мане 21 600 зерен, поэтому мы могли также взять на себя смелость сказать, что вся планета весит 1,296 х 1026 зерен ячменя, что дает следующий результат:
Срез Земли в 1 градус = 360 х 1024 зерен ячменя
Срез Земли величиной одна минута = 6 х 1024 зерен ячменя
Срез Земли величиной одна секунда = 1024 зерен ячменя
Значит, секция нашей Земли размером одна секунда весит столько же, сколько весит невероятно точное число 100 000 000 000 000 000 000 ячменных зерен. Просто потрясающе!
И снова все это полностью согласуется с системой счета, которой пользовались шумеры.
Масса Земли
Для нас это выглядело так, будто мы имеем дело с системой измерений, которую придумали, взяв за исходную точку массу Земли. Поэтому мы решили попытаться пройти весь процесс с самого начала, как будто мы создаем новые меры, отталкиваясь от некой предшествующей системы:
Шаг 1. Делим известную массу Земли на 6 х 1024 единицы. Получаем теоретическую единицу, равную 996 граммам.
Шаг 2. Устанавливаем размер для куба, который вмещает 996 граммов воды. Такой куб будет иметь стороны 9,986648849 см.
Шаг 3. Берем длину стороны куба за одну десятую новой линейной единицы меры. Эта единица будет поэтому 99,86648849 см.
Теперь мы изобрели нашу собственную меру длины, выведенную из точной массы Земли, используя для этого шумерский десятичный шестидесятиричный принцип. Как это сравнивается с реальностью?
Самая лучшая оценка шумерского двойного куша была взята из исследования линейки, выбитой на статуе царя Гудеа, и длина ее была 99,88 сантиметра. Разница между двойным кушем и нашей гипотетической единицей длины поэтому составляет 0,1351151 миллиметра — меньше толщины волоса! Такое поразительное приближение вполне может сказать об археологах, которые изучали статую Гудеа, больше, чем что-либо еще.
Нам приходилось напоминать себе, что все-таки это могло быть совпадением, как бы удивительно приближенным это не было к шумерской математике. Но тогда мы попробовали другой необычный расчет: «Как, — подумали мы, — вписался бы в массу Земли стандартный фунт?» — помня при этом, что фунт был производным от куба с ребром одна десятая мегалитического ярда, наполненного зерном ячменя. Начав опять с массы Земли в 5,9763 х 1024 килограммов, мы перевели эту цифру в современные (эвердьюпойс) фунты и получили цифру 1,31754 х 1025 степени фунтов. Это была еще одна крупная и, по-видимому, бессмысленная цифра, поэтому Алан разделил ее на 366, чтобы определить число фунтов в срезе Земли величиной один мегалитический градус. Калькулятор Алана показал ответ: 35 998 360 655 737 704 918 033 фунта
Результат был поразительный. Алан еще раз поделил на 60, чтобы получить результат для «минутного» среза. Цифры на этот раз вышли следующие: 599 972 677 595 628 415 300.
Теперь мы завершили ряд, разделив массу Земли на 6, чтобы найти количество фунтов в основанной на мегалитической секунде секции всей планеты (которая будет на экваторе равна 366 мегалитическим ярдам). Результат был: 99 995 446 265 938 069 217.
Вдруг все случайные числа метрической системы расцвели в роскошные, почти совершенные целые числа, поражающие своей круглостью. Вес мира определен по мегалитической системе вкупе со стандартным фунтом, потому что следующее абсолютно верно!