Мало того - каждый "хвост" может существовать сам по себе. Без породившего его d-монополя. Вихревую материю - материю из флюксов мы называем линейной материей. Вихревая губка. В 1736 году Иоганн Бернулли предположил, что все пространство, образующее нашу Вселенную, заполнено несжимаемой "жидкостью" - эфиром - с бесчисленными микроскопическими "водоворотами", ориентированными во всевозможных направлениях. Такое пространство из вихрей, из которых все состоит и в которых все тела "плавают" как рыбы в воде, назвали вихревой губкой.
"Губчатую" модель пространства совершенствовали самые выдающиеся ученые XIX века - Максвелл (в 1861
году), Кельвин (1880), Фицджеральд (1885). Почему они предполагали, что мы с вами живем именно в таком странном вихревом пространстве?
В начале XIX века многие исследователи решили, что свет представляет собой такие же колебания эфира, как звук - колебания воздуха. Но постепенно выяснялось, что световые колебания в отличие от звуковых поперечные, а не продольные: в случае поперечных колебаний среда колеблется в направлении перпендикулярном направлению распространения волн, а в случае продольных - вдоль этого направления.
Поперечные колебания в сплошной среде возможны только в том случае, если среда - твердое тело, а не газ или жидкость. Но в таком твердом эфире не могли бы двигаться ни мы с вами, ни другие тела (вроде звезд и планет). Вот и пришлось людям изобрести модель вихревой губки жидкости, в которой могут двигаться тела и в то же время возможна передача поперечных колебаний по вихрям.
В рамках этой классической модели сегодня получают "гидродинамическое" истолкование известные свойства электромагнитных процессов и даже выводятся обобщающие их уравнения Максвелла [читатели, знакомые с векторным анализом, могут убедиться в этом по статье Э. Келли "Уравнения Максвелла как свойства вихревой губки" в сборнике "Джемс Клерк Максвелл", изд.Наука, M.I 968 или по ее оригиналу в журнале "American Journal of Physics", 1963, том 31, вып.10, стр. 785-791].
Знатоки возразят: а как же быть с теорией относительности? Она же "отменила" эфир! Неужели модель вихревой губки, которая эфир возрождает, не противоречит теории относительности?
Не противоречит! Вспомните, что преобразования Лоренца - фундамент специальной теории относительности - были получены Хендриком Лоренцом (а еще раньше - в 1900 г. - Джозефом Лармором) именно из уравнений Максвелла!
Уже после этого Пуанкаре и Эйнштейн сформулировали знаменитый "постулат относительности": в любых равномерно и поступательно движущихся системах отсчета (их называют инерциальными) скорость света в вакууме и все
ческие законы одинаковы. На основе этого постулата Альберт Эйнштейн и сделал вывод о "ненужности" эфира: зачем нужен этот непонятный эфир, если все физические теории можно просто проверять на лоренц-инвариантность (так теперь называют соответствие постулату относительности)?
В настоящее время эфир существует под псевдонимом "физический вакуум" и его свойства - предмет исследований специалистов по физике элементарных частиц. Мы показали, что благодаря флюксоидам становится понятным механизм формирования вихрей частиц в физическом вакууме и образование из флюксов различных видов линейной материи, в том числе вихревых губок.
А какие именно частицы вращаются в вихрях? Какими могут быть разновидности флюксов и линейной материи?
Электронная разновидность флюксов
Вихри Абрикосова. Оказывается, одна из разновидностей квантовых вихрей давно известна. Это знаменитые вихри Абрикосова в сверхпроводниках второго рода.
В отличие от сверхпроводников 1 -го рода, "обтекаемых" внешним магнитным полем, сверхпроводники 2-го рода магнитное поле буквально "протыкает" насквозь - проходит через всю их толщу. Но, как оказалось, "протыкает" только в отдельных каналах - "проколах", внутри которых утрачивается свойство сверхпроводимости.
А.А.Абрикосов в 1957 году теоретически показал, что "проколы" - это флюксоиды Лондона. Вокруг каждого "прокола" в сверхпроводнике вращается цилиндрический электронный вихрь - эдакий электронный смерч с радиусом около 10~* см (порядка 100 атомных размеров) и с длиной несверхпроводящего "ствола" равной толщине образца.
Вихри Абрикосова, выходя на поверхность сверхпроводника, располагаются на вершинах равносторонних треугольников - образуют треугольную решетку. При увеличении напряженности внешнего магнитного поля "проколов" становится больше и расстояние между вихрями уменьшается. При расстоянии порядка диаметра вихря сверхпроводимость разрушается полностью.
Соответствующие разрушающие сверхпроводимость магнитные поля называют верхними критическими. Магнитная индукция достигает в таких случаях в некоторых сверхпроводниках величины порядка 1 МГс (мегагаусс) = 100 Тл (тесла). Поэтому сверхпроводники 2-го рода применяют для создания очень сильных магнитных полей.