Еще одним параметром, существенно влияющим на качество и комфорт пилотирования, является экспонента — степень нелинейности отклика системы на изменение управляющего сигнала. Строго говоря, эта зависимость получила такое название по причине визуальной похожести на график экспоненты у = ех. На самом деле механизм формирования нелинейного отклика несколько сложнее. Чтобы не загружать микроконтроллер пульта вычислениями степенной функции в режиме реального времени, в память микроконтроллера записывается готовая таблица значений некой степенной функции
где
Во время работы пульта значения из этой таблицы накладываются на линейную зависимость по формуле
где
Рис. 2.10.
Наличие экспоненты позволяет мягко и комфортно управлять моделью в районе небольших отклонений рукояток, но в то же время при необходимости резко воздействовать на модель, парируя порыв ветра или выполняя вираж. Глубину экспоненты каждый пилот настраивает под себя и для каждой модели в отдельности.
В общем случае рекомендуется увеличивать экспоненту для начинающих пилотов, склонных к нервным и суетным подергиваниям рукояток пульта, и уменьшать вплоть до полной линейности отклика для воздушной акробатики.
Примечание
Применительно к мультикоптерам, глубина экспоненты задается в настройках контроллера, а в настройках пульта экспоненты быть не должно. Экспоненты пульта и контроллера не должны накладываться на сигнал одновременно.
Как вы уже поняли, общая концепция радиоуправления коптером такова: пульт должен передать максимально точные и стандартные "сырые" сигналы управления, а всю дальнейшую обработку будет выполнять полетный контроллер на основе своих настроек.
Конвертер
У многоканальной системы с раздачей широтно-модулированных импульсов по раздельным выходным каналам есть принципиально неустранимые недостатки. Во-первых, отдельный сигнальный провод для каждого канала. Это особенно актуально для 12- или 14-канальных систем. В этом случае миниатюрный приемник соединяется с полетным контроллером и прочими бортовыми устройствами толстым жгутом проводов, неэстетичным и весящим больше, чем сам приемник. Однако полетный контроллер может и сам декодировать "сырой" РРМ-сигнал, при условии, что он выведен на отдельный выход приемника.
Во-вторых, низкая стабильность и точность управляющего сигнала, обусловленная необходимостью лишних преобразований из одного типа сигнала в другой. Было бы логично передать цифровое значение, соответствующее положению рукоятки пульта, по радиоканалу и затем из приемника переслать в исполнительное устройство без лишних преобразований. Однако для обработки цифрового сигнала исполнительное устройство должно обладать собственными вычислительными ресурсами. Но возможность выпускать такие устройства массово и недорого возникла лишь относительно недавно, с появлением дешевых и миниатюрных микроконтроллеров. Поэтому в традиционной системе приемник в любом случае преобразует цифровой сигнал в импульсы определенной длительности на выходе канала. Несмотря на то, что импульс представлен двоичными уровнями сигнала "0" и "1", физическая длительность импульса — это аналоговый параметр. То есть, на этапе передачи-приема мы имеем преобразование из аналогового сигнала в цифровой и обратно в аналоговый.
Если выход приемника подключен к обычной сервомашинке (принцип ее работы мы рассмотрим далее), то она использует непосредственно длительность импульса в качестве управляющего параметра. Если же мы подаем широтно-модулированный импульсный сигнал на вход полетного контроллера, то он должен измерить длительность импульса при помощи таймера и перевести ее в цифровое значение.