Читаем Твой первый квадрокоптер: теория и практика полностью

Есть и другие положительные моменты в использовании акселерометра. Предположим, командой с пульта мы наклонили квадрокоптер для полета вперед. Чтобы компенсировать уменьшение вертикальной тяги, необходимо равномерно увеличить обороты всех моторов пропорционально наклону. При отсутствии акселерометров можно приблизительно вычислить наклон квадрокоптера через угловое ускорение, его продолжительность и величину управляющего сигнала с пульта. Но проще и точнее угол наклона вычисляется по данным с акселерометров.

Разумеется, акселерометры измеряют не только ускорение свободного падения, но и линейные ускорения по любой из осей при движении квадрокоптера. В ряде случаев эта информация тоже бывает полезна.

С другой стороны, когда надо быстро определить скорость и знак углового ускорения, проще использовать гироскоп, который так же выдает эти данные более точно и в готовом виде. Таким образом, каждый сенсор хорош для своей задачи. В современных MEMS-микросхемах трехосевые гироскопы и трехосевые акселерометры часто объединяют в одном корпусе с размерами около 3x3x1 мм. В этом же корпусе находится электронная схема для предварительной цифровой обработки данных, с внешним протоколом обмена SPI или I2С.

Чтобы определить курсовое направление рамы квадрокоптера, нужен еще один датчик — интегральный компас, или магнитометр. Квадрокоптер может лететь как угодно, вбок, назад, или по диагонали, поэтому "вперед" в нашем случае — это условное направление рамы и контроллера, относительно которого определяется фактическое направление полета. На плате контроллера направление "вперед" обычно обозначается стрелкой.

Принцип работы интегрального магнитометра (компаса)

В основе конструкции интегрального магнитометра (рис. 2.4) лежит анизотропный магниторезистивный эффект. Чувствительный элемент изготавливается из пермаллоевой пленки, способной изменять свое сопротивление в зависимости от направления протекающего через нее тока и направления вектора ее намагниченности. В свою очередь, вектор намагниченности пленки определяется направлением силовых линий магнитного поля, в котором находится чувствительный элемент.

Рис. 2.4. Устройство интегрального магнитометра

Четыре пермаллоевых элемента соединяются в измерительный мост (см. рис. 2.4). При подаче постоянного напряжения на мост датчик начинает измерять интенсивность внешнего магнитного поля, направленного вдоль его чувствительной оси. Мостовой датчик имеет ось предпочтительного намагничивания, так называемую легкую ось, и наиболее чувствителен к полям, направленным перпендикулярно этой оси. В квадрокоптерах применяются трехосевые интегральные магнитометры, состоящие из трех независимых датчиков, ориентированных по трем ортогональным осям и электронной схемы. В спецификации магнитометра всегда указывают направление осей относительно корпуса (рис. 2.5).

Рис. 2.5.Магнитометр HMC5883L на плате расширения

Магнитометры не подвержены вибрации, но на их показания влияют внешние близко расположенные металлические предметы. Помехи можно разделить на три основных класса.

• "Искажения твердого железа" (Hard Iron Distortion) — к магнитному полю земли добавляется постоянное магнитное поле от намагниченных предметов, например магнита звукоизлучателя. Намагниченными могут быть даже выводы радиодеталей, изготовленные из луженого железа. Эта постоянная составляющая может быть исключена при калибровке.

• "Искажения мягкого железа" (Soft Iron Distortion) — магнитное поле искажается посторонними предметами, не имеющими собственной намагниченности. Например, сплавы никеля, пермаллой искажают силовые линии поля. Такие искажения зависят от положения объекта в пространстве и труднее компенсируются. К счастью, в конструкции квадрокоптера обычно не бывает таких предметов. Детали из сплавов алюминия и меди не вносят искажения.

• Динамические или вихревые помехи. Это специфическая особенность электрических летательных аппаратов, особенно коптеров. Мощные токи, протекающие через проводники силовых цепей и батарею, порождают магнитные поля в окружающем пространстве. Причем напряженность этих полей постоянно меняется в зависимости от нагрузки на моторы.

Иногда магнитные помехи настолько сильны, что делают невозможным использование компаса и даже способны привести к аварии. К сожалению, переменные магнитные поля невозможно скомпенсировать программно и приходится применять специальные конструктивные меры. Для уменьшения наводок микросхему компаса стараются выносить с платы контроллера и поднимать вверх на 10–20 см над рамой. При укладке силовых проводов следует избегать образования петель, все провода должны иметь минимальную длину. Силовые провода рекомендуется перекручивать. Впрочем, в квадрокоптерах начального уровня вполне можно обходиться без компаса и при наличии магнитных помех просто отключать его в настройках.

Перейти на страницу:

Все книги серии Электроника

Твой первый квадрокоптер: теория и практика
Твой первый квадрокоптер: теория и практика

Детально изложены практические аспекты самостоятельного изготовления и эксплуатации квадрокоптеров. Рассмотрены все этапы: от выбора конструкционных материалов и подбора компонентов с минимизацией финансовых затрат до настройки программного обеспечения и ремонта после аварии. Уделено внимание ошибкам, которые часто совершают начинающие авиамоделисты. В доступной форме даны теоретические основы полета мультироторных систем и базовые понятия работы со средой Arduino IDE. Приведено краткое описание устройства и принципа работы систем GPS и Глонасс, а также современных импульсных источников бортового питания и литий-полимерных батарей. Подробно изложен принцип работы и процесс настройки систем, OSD, телеметрии, беспроводного канала Bluetooth и популярных навигационных модулей GPS Ublox. Рассказано об устройстве и принципах работы интегральных сенсоров и полетного контроллера.Даны рекомендации по подбору оборудования FPV начального уровня, приведен обзор программ дня компьютеров и смартфонов, применяемых при настройке оборудования квадрокоптера.Для читателей, интересующихся электроникой, робототехникой, авиамоделизмом

Валерий Станиславович Яценков

Развлечения
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки

Похожие книги

500 научных фактов, которые вас удивят
500 научных фактов, которые вас удивят

Не зря ученые часто представляются нам чуть ли не сумасшедшими – им известны такие вещи, от которых волосы встают дыбом! Вы знали, что на Земле живет в 100 миллионов раз больше насекомых, чем людей, и что исследователи открывают 10000 новых видов насекомых каждый год? Или о том, что Солнечная система вращается вокруг центра нашей галактики со скоростью 273 километра в секунду? Или что за день кровь человека преодолевает более 19 километров по сосудам? А знали ли вы, что у неандертальцев объем мозга был значительно больше, чем у нас с вами? А о том, что у вас во рту постоянно находится около 100 миллионов микробов, которые питаются остатками пищи и омертвевшими клетками ротовой полости. Вы хотите узнать о природе, человеке, жизни животных, а также о нашей планете и о космосе факты, которые вызовут у вас шок? Откройте для себя научные факты, которыми будет интересно поделиться с друзьями и рассказать детям.

Виктор Сергеевич Карев

Развлечения / Прочая научная литература / Образование и наука