До сих пор мы рассматривали решение уже готовых задач. У читателя мог возникнуть вопрос:
Рассмотрим, например, а. с. № 489 862: «Устройство для нанесения полимерных порошков, содержащее камеру, пористую перегородку, вибратор и коронирующий электрод, отличающееся тем, что с целью повышения качества нанесенного покрытия коронирующий электрод выполнен в виде кольца. снабженного средством перемещения, выполненным, например, в виде микрометрических винтов». Итак, электрод, который ранее был неподвижен, сделан подвижным — его положение можно регулировать микрометрическим винтом. Использованы «железки»-переход типа М-М. Можно с уверенностью ставить новую задачу: как повысить точность перемещения электрода (а заодно и автоматизировать это перемещение)? Ответ очевиден: нужен переход типа М — м. Сразу можно указать конкретные способы: магнита- и электрострикция, обратный пьезоэффект и тепловое расширение. Насколько достоверен этот прогноз? Возникнет ли такая задача и будет ли она так решена? Что ж, есть и другие технические системы, в которых уже давно появилась потребность повысить точность перемещения; можно посмотреть, как обстоит дело в этих системах. Например, а. с. № 424 238: в устройстве для малых установочных перемещений длину регулировочного элемента меняют нагреванием — охлаждением; а. с. № 409117: микроинъектор с электрострикционным приводом; а. с. № 259 612: в устройстве для совмещения микроэлементов привод выполнен «в виде пластины, изменяющей свои размеры в результате теплового расширения»; а. с. № 275 751: регулировку лабиринтного насоса осуществляют с помощью теплового расширения; а. с. № 410 113: микроманипулятор с пьезоэлектрическим приводом; а. с. № 518 219: устройство для вытеснения жидкости (т. е. тот же микроинъектор!) с магнитострикционным приводом… Таких примеров настолько много, что можно без колебаний записать в учебники конструирования правило: «Помни, что микрометрический винт рано или поздно перестанет обеспечивать требуемую точность, и переходи на использование теплового расширения, магнитострикции, электрострикции и обратного пьезоэффекта». Этого правила пока не знают: каждый раз кто-то заново ищет решение, кричит «Эврика!», составляет заявку, спорит с экспертизой…
ФИЗИКА — КЛЮЧ К СИЛЬНЫМ ИЗОБРЕТЕНИЯМ
Нетрудно заметить: на макроуровне преобладают простые комбинационные приемы (разрезать, перевернуть, соединить и т. д.), на микроуровне в состав сложных приемов почти всегда входят физические эффекты и явления. На микроуровне мир приемов переходит в мир физики и химии. Отсюда и необходимость обеспечить изобретателя информацией о физических приемах, т. е. об изобретательских возможностях физических эффектов и явлений.
Здесь возникают две проблемы: как сделать, чтобы не простаивали знания об уже известных физических эффектах; как пополнить эти знания сведениями «по всей физике» и «по всей химии».
«Школьная» (и тем более «вузовская») физика дает очень мощный и почти универсальный набор инструментов. Вот только пользоваться этими инструментами обычно не умеют…
Вспомним хотя бы задачу 5. Есть пистолет, нужно определить, был ли двое суток назад произведен выстрел из этого пистолета или нет. Задача возникла из-за того, что событие произошло раньше, а не в данный момент. Сократим время до нуля (как того требует оператор РВС). Представьте себе, что в соседней комнате некто произвел выстрел (или десять выстрелов — все равно), затем мгновенно (в течение микросекунды) вычистил пистолет и передал вам два пистолета. Надо определить, из какого именно пистолета произведен выстрел.