Читаем Творчество в математике. По каким правилам ведутся игры разума полностью

По-видимому, мастера действовали точно так же. Однако суть задачи заключалась в другом: если нужные точки не совпадали, это означало, что я определил середину панели неверно. Как исправить эту ошибку? Мастера работали так быстро, что было сложно уследить, в чем заключалась суть их метода. Казалось, что они, на основе проб и ошибок, несколько раз отмечали нужную точку, пока не получали желаемый результат. Но как им удавалось без всяких расчетов находить нужные точки так быстро? Возможно, я недооценивал их метод, и он был намного эффективнее, чем мне казалось?

На следующее утро мы сели в автобус. Был солнечный день, нас ожидала долгая дорога, поэтому в начале пути я занимал себя тем, что наблюдал, как просыпалась жизнь на рисовых полях и в деревнях, мимо которых мы проезжали. Я чувствовал себя прекрасно, и мой разум переключался между реальностью и выдумкой.

Я попеременно видел сначала то, что в действительности находилось передо мной, затем — какие-то воображаемые картины. Внезапно у меня возник вопрос: как исправить ошибку измерений и получить точный результат?

Я вновь представил себе мастеров за работой, с бамбуковой рейкой в одной руке и с карандашом — в другой. Я отметил середину рейки на глаз, затем перенес отметку на край деревянной панели. Затем я сдвинул рейку до конца. Конец рейки и край панели не совпали — я ошибся, но… Эврика! Как же я раньше не додумался? Чтобы исправить ошибку, нужно было найти половину допущенной ошибки и прибавить (или вычесть) ее к исходной оценке в зависимости от того, в какую сторону я ошибся — в большую или в меньшую. Так я нашел решение: эта сумма или разность половин и была равна искомой половине стороны панели. Если же панели требовалось разделить на три части, следовало действовать так же: нужно было прибавить или отнять треть величины, на которую мы ошиблись. Если, повторив эти действия дважды, я не получал удовлетворительный результат, следовало повторить все с самого начала.



Мастер исправляет ошибку, допущенную при измерении на глаз.


Пусть L — длина отрезка, который мы хотим разделить на три части. Сначала определим треть отрезка на глаз. Отметим на отрезке три точки, обозначающие отрезки длиной a1, 2a1 и 3a1 (см. рисунок на следующей странице).

Если последняя точка совпадает с концом отрезка, то наше решение верно. В противном случае требуется исправить допущенную ошибку Е. Как это сделать? Нужно найти ее треть, Е/3, и прибавить или отнять ее от первой оценки at в зависимости от того, в какую сторону мы ошиблись, большую или меньшую:

а1 ± E/3.

Мы получим новую оценку, а2, затем повторим эти же действия сначала.



Последовательные оценки образуют ряд, сходящийся к правильному результату, так как найти середину или треть очень маленького отрезка, длина которого равна величине ошибки, намного проще, чем найти длину исходного отрезка. У мастеров был острый взгляд, поэтому описанный выше алгоритм должен был привести к желаемому результату. Так и происходило.


Как рассуждают мастера?


Математический анализ задачи подтвердил мои ожидания: числовой ряд сходился к желаемому результату. Тогда я задал себе еще один, возможно, более сложный вопрос, который, однако, был крайне важен в моих исследованиях, посвященных математическим методам мастеров тораджи: думают ли они так же, как я? Я не мог просто подойти и задать им этот вопрос. Нужно было сделать так, чтобы они сами объяснили, как они рассуждают, решая эту задачу.

Некоторые из мастеров немного говорили по-индонезийски, но большинство общалось только на местном наречии тораджи. Раньше я пользовался услугами переводчика на английский, но иногда замечал, что он, вместо того чтобы переводить то, что говорил мастер, приводил собственную трактовку его слов. Сейчас я не мог допустить подобного. Я немного понимал по-индонезийски и решил еще немного подучить язык, чтобы поговорить с авторами гравюр. А то, что я уже был знаком с некоторыми из них, должно было помочь в общении. Так происходило межкультурное взаимодействие.


Деление отрезка на равные части неевклидовым методом


Мне стоило немалых трудов объяснить одному из мастеров суть моего вопроса, и в итоге он подтвердил, что при делении отрезка на равные части он рассуждал точно так, как я и представлял. На это указывали все выполняемые им действия, но я хотел, чтобы мастер изложил ход своих мыслей полностью, поэтому я решил действовать как ученик и попросил его объяснить, как он работает. Я решил приступить к работе сам, взял инструменты, с которыми работали мастера, и начал делить деревянную панель на равные части. Потом я спросил, что нужно делать, если я ошибся при делении отрезка на две части, и получил ответ: «Разделить излишек на две части». Затем я уточнил, что делать, если отрезок нужно разделить на три части, и получил ответ: «Точно так же — разделить излишек на три части».

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги