Читаем Творчество в математике. По каким правилам ведутся игры разума полностью

Замысел автора рекламы заключался в том, чтобы с помощью математических инструментов показать, сколь длительным и скрупулезным является процесс изготовления вина, ведь именно слова «длительность» и «скрупулезность» описывают большую часть математической деятельности.


Математика в дизайне


Двоичное время

В двоичной системе счисления для представления любых чисел используются всего две цифры — 0 и 1. Подобно десятичной системе счисления, каждый разряд числа в двоичной системе соответствует определенной степени двойки:

37210 =3·102 + 7·101 + 2·100;

1012 =1·22 + 0·21 + 1·20.

В таблице ниже представлены тринадцать первых натуральных чисел в обеих системах счисления:



Дизайнеры порой удивляют нас неожиданными решениями. Мы привыкли измерять время в часах, которые делятся на 60 минут, и в минутах, которые делятся на 60 секунд. Часы, показывающие время в двоичной системе счисления, поначалу могут показаться экстравагантной выдумкой. Их циферблат представляет собой прямоугольник. На верхней линии обозначаются часы, на нижней — минуты.

Внутри прямоугольника находятся четыре вертикальные линии, на которых указываются значения, соответствующие каждой степени двойки (см. рисунок ниже). Так как число часов находится в интервале от 0 до 12, для представления часов достаточно четырех цифр (см. таблицу на предыдущей странице). Для обозначения минут, число которых находится на интервале от 0 до 60, требуется шесть цифр.



Взглянув на эти часы, сразу узнать время нельзя — сначала нужно сложить значения, отмеченные на каждой линии. Часы на рисунке выше показывают 7 часов и 48 минут. Четверть часа, полчаса и три четверти часа обозначаются так:



Сначала эти часы кажутся неудобными, но постепенно по ним можно научиться определять время так же быстро, как и по обычным. Эти часы — удивительный пример того, как математика стала основой дизайна вещи.


Лента Мёбиуса

Если соединить противоположные стороны прямоугольной ленты ABCD, то есть совместить пары вершин АС и BD, получится кольцо. На следующем рисунке стрелкой показано, как именно совмещаются вершины исходного прямоугольника:



А чтобы построить ленту Мёбиуса, необходимо соединить вершину А с вершиной D, В — с С:



В результате получается кольцо, у которого всего одна граница и одна сторона.



Эта необычная геометрическая фигура используется в дизайне ювелирных украшений, в частности колец. Реклама этих колец сопровождается текстами, которые подчеркивают их особенности.

— Особые топологические свойства: «Это чудесное серебряное кольцо имеет уникальную форму: у него всего одна сторона. Его форма символизирует равновесие между внутренним и внешним я.

— Свойства, которые можно считать следствием особой формы кольца: «Как маленькая золотая лента может заставить вас почувствовать, что весь мир вращается у вас вокруг пальца? Оно совершенно…»

Обычные кольца имеют цилиндрическую форму и две стороны — внешнюю и внутреннюю. С пальцем соприкасается только внутренняя сторона. Если внутренняя сторона соприкасается с пальцем, то внешняя — со всем остальным, то есть с целым миром. Кольцо Мёбиуса имеет всего одну сторону. Следовательно, та сторона кольца, которая соприкасается с пальцем, соприкасается и со всем остальным миром. Нет различий между «внутри» и «вне», поэтому действительно можно сказать, что с кольцом Мёбиуса весь мир будет вращаться вокруг вашего пальца. В этом случае речь идет не просто о математическом объекте, взятом за основу дизайна, — также были созданы корректные и непротиворечивые трактовки, помогающие понять его математические свойства.

* * *

ГЕКСАМИНО И ДИЗАЙН

На рисунке ниже изображена развертка картонной коробки, в которую укладываются шапочки для душа в гостиницах. Эта развертка называется гексамино, так как состоит из шести одинаковых фигур, или модулей, соединенных сторонами.



Посредством последовательных сгибов из этой развертки получается трехмерный многогранник — гексаэдр, то есть куб. Существует одиннадцать различных гексамино, из которых можно сложить куб.

* * *

Дух геометрии

В дизайне парфюмерных флаконов иногда используются настоящие геометрические головоломки с алгебраическими формулами. Так произошло с мужским одеколоном и дезодорантом известной японской марки. Дизайнер создал два флакона разной формы, которые, сложенные вместе, образовывали квадрат. Один из флаконов имел форму квадрата, другой представлял собой симметричную фигуру:



Вместимость большого флакона равнялась 75 мл, малого — 50 мл. В рекламе основной упор делался на суммарном объеме флаконов и их особой форме:



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги