— Именно. По-моему, ее совершенно не интересовала сфера его деятельности — занимайся он хоть наукой, хоть литературой, ей все равно. Питер никогда слова худого не говорил о Маргарет, но однажды в доверительной беседе поведал мне, что та комплексует из-за собственной необразованности — она какое-то время проучилась в колледже, но не преуспела, — вот и решила заполучить родительское прощение, выскочив замуж за ученого. Подозреваю, это выводило его из равновесия — мысль, что он не оправдает ее ожиданий. Естественно, узнав про Лилу, Маргарет пришла в бешенство. Чем только она ему не грозила, но Питер не принимал ее всерьез. Я посоветовал ему отнестись к угрозам жены с большим вниманием, однако Питер заверил, что это пустые слова, не более.
Теперь уже я подалась вперед:
— Она ему угрожала? Чем?
— Обещала устроить скандал на факультете. Говорила, что, мол, лично потолкует с Лилой. Что уйдет от него и заберет Томаса. Но Питер знал, что все это только для вида. У Маргарет духу не хватило бы вернуться к родителям ни с чем. Несмотря на вполне простительную обиду, она твердо знала, что ей нужно в этой жизни, — престиж, главным образом. А Питер, по ее разумению, мог ей предоставить желаемое.
— Примерно так Мак-Коннел мне ее и описывал.
— Вы с ним говорили?
— Да.
Кэрролл выпрямил ноги. На правой ноге у него был синий носок, а на левой — светло-коричневый.
— Когда?
— Месяц назад. В Никарагуа.
— А мне и словом не обмолвился, — пробормотал Кэррол себе под нос.
— Вы тоже говорили с ним?
— Не то чтобы говорили… Мы переписываемся.
— Но вы же сказали…
— Сказал, да. Все верно, я действительно
— Вы? Но почему?
— Справедливости ради надо признать — я поощрял отношения Питера и Лилы. Совершенные спутники жизни так же редки, как совершенные числа. Лично мне повезло: свою половинку я встретил еще в ранней молодости, и у меня хватило ума сразу жениться. А у Маргарет и Питера не было ничего общего, да и любви настоящей не было. Другое дело — Лила. Стоило мне узнать ее поближе, как я понял: они созданы друг для друга.
— Вы знали мою сестру? — ошарашенно спросила я.
— Да, Питер нас познакомил. Хотел, чтобы она была рядом, когда он объявит мне об их решении взяться за Гольдбаха. Догадывался, что я разволнуюсь. Не знаю, что вам известно об этой гипотезе…
— Только то, что рассказывала Лила. Гипотеза была сформулирована в 1742 году и завела в тупик многие великие умы. «Любое четное число не меньше четырех можно представить в виде суммы двух простых чисел». Так?
— Совершенно верно. Любой математик может свихнуться, отдавшись одной-единственной недостижимой цели. Возьмем, к примеру, Луи де Бранжа[64]
и гипотезу Римана. Как и гипотеза Гольдбаха, а до недавнего времени и теорема Ферма, гипотеза Римана считается одной из сложнейших среди нерешенных задач. Де Бранж работал над ней двадцать пять лет и в 2004 году опубликовал свое доказательство в Интернете. Но, надо отметить, мало кто обратил на него внимание, и коллегам еще предстоит оценить данную работу. И что удивительно: де Бранж не какой-нибудь выскочка, в восьмидесятых он доказал гипотезу Бибербаха — достижение немалой важности; доказательство, однако, было встречено с большой долей скепсиса — как и нынешнее доказательство гипотезы Римана. Уж очень всем хотелось, чтобы де Бранж оказался не прав. Но вообразите — он победил! В случае же с гипотезой Римана сложность в том, что де Бранж использовал математические средства, которыми в мире владеют считанные единицы, — спектральной теорией, например, — так что собрать для проверки доказательства компетентную комиссию будет весьма непросто. К тому же в 1964 году де Бранж уже заявлял, что у него, дескать, имеется доказательство существования инвариантных подпространств для непрерывных преобразований в гильбертовом пространстве. Однако сие не подтвердилось, и он дорого поплатился за свою ошибку — его репутация серьезно пострадала. У математиков, к худу ли, к добру ли, хорошая память. Сейчас де Бранжу далеко за семьдесят. Должен признать, я за него болею, хотя бы потому, что с удовольствием посмотрел бы, как он докажет целому свету, что и старикам по силам великие достижения. — Кэрролл усмехнулся. — Вы уж меня простите. Отречься от роли профессора математики не так-то просто. Это у нас в крови, знаете ли. Прав был Пуанкаре — математиками рождаются, а не становятся.— Мак-Коннел и моя сестра, — напомнила я. — Говорите, вы поощряли их отношения?
Хаос в Ваантане нарастает, охватывая все новые и новые миры...
Александр Бирюк , Александр Сакибов , Белла Мэттьюз , Ларри Нивен , Михаил Сергеевич Ахманов , Родион Кораблев
Фантастика / Детективы / Исторические приключения / Боевая фантастика / ЛитРПГ / Попаданцы / Социально-психологическая фантастика / РПГ