Читаем У интуиции есть своя логика. Гёдель. Теоремы о неполноте. полностью

Когда была установлена логическая база, дававшая возможность осуществлять доказательства, проверяемые алгоритмически, оставалось только найти аксиомы, которые позволили бы доказать все арифметические истины. К несчастью для программы Гильберта, эта цель недостижима. Теорема, в которой изложена эта невозможность, известна как первая теорема Гёделя о неполноте, или просто теорема Гёделя:

"Если выбрать в качестве аксиом любое множество истинных арифметических высказываний и требовать, чтобы доказательства, которые можно сделать на их основе, могли быть проверены алгоритмически, то будет по крайней мере одно истинное высказывание, которое не может быть доказано на основе этих аксиом".

Гёдель доказал эту теорему в 1930 году и, как мы уже знаем, впервые открыто изложил ее на конгрессе в Кёнигсберге 7 сентября того же года. Статья с выведением доказательства была послана в журнал Monatshefte f"ur Mathematik und Physik ("Ежемесячник по математике и физике") в ноябре и появилась в томе 38 (1931). Значение этой публикации для логики сравнимо только с "Метафизикой" Аристотеля. Изложение доказательства было таким ясным и прозрачным, что не вызвало ни малейшей полемики.

12 ЛОГИЧЕСКИХ ПРАВИЛ

В своей докторской диссертации, представленной в 1930 году, Гёдель доказал, что любое рассуждение, которое можно проверить алгоритмически, может быть построено всего на 12 логических правилах, которые мы приводим ниже. Далее выражение "Р => Q" означает "если Р, то Q", а "x Р(х)" — "каждое х выполняет свойство Р".

1. Если справедливо высказывание Q, то, каким бы ни было Р, справедливо высказывание "Р => Q".

2. Если справедливо "Р => (Q => R)" и также справедливо "Р => Q", то справедливо "Р=> R".

3. Если справедливо "не-Q => не-Р", то также справедливо "Р => О".

4. Если справедливо"x P(x)", то справедливо "Р(n)", где n — любое число.

5. Если справедливо "x Р => Q(x)", то справедливо "Р => [x Q(x)]", если только х не используется в Р.

6. Каким бы ни было число х, справедливо, что х = х.

7. Какими бы ни были числа х и у, справедливо, что если х = у, то у = х.

8. Какими бы ни были числа х, у, z, справедливо, что если х = у и у = z, то х = z.

9. Если х = у, то можно заменить х на у в любом числовом выражении.

10. Если х = у, то можно заменить х на у в любом высказывании.

11. Если справедливо Р и справедливо "Р => Q", то справедливо Q.

12. Если справедливо Р(х) для произвольного х, то справедливо"x P(х)".

В целом первые десять правил представлены как универсально справедливые высказывания, в то время как два последних представлены отдельно как правила вывода. Это разграничение чисто техническое и не имеет значения для наших целей.

Но как можно доказать факт такого масштаба? Как можно доказать, что каким бы ни было множество выбранных аксиом (если рассуждения проверяются алгоритмически), то всегда найдется истина, недоказуемая на их основе? Сейчас мы перейдем к объяснению доказательства и для этого рассмотрим, шаг за шагом, основные моменты рассуждений Гёделя.

Ханс Хан, руководитель докторской диссертации Гёделя. Этот австрийский философ и математик внес значительный вклад в формирование Венского кружка.

Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг