Читаем У интуиции есть своя логика. Гёдель. Теоремы о неполноте. полностью

У множеств N и , как мы видели, одно и то же кардинальное число, но... происходит ли то же самое с N и R? Кантор открыл, что это не так: N и М имеют разные кардинальные числа, и между ними невозможно установить биективное соответствие. Доказательство этого факта состоит в том, что любая попытка установить биективное соответствие между натуральными и действительными числами провалится и по крайней мере одно действительное число неизбежно останется без соответствия. Если бы натуральные числа обозначали стулья, а действительные — детей, то всегда будет один ребенок, оставшийся без стула.

Чтобы понять эту идею, приведем доказательство для одного специфического примера, хотя ясно, что эта процедура работает во всех случаях. Итак, назначим действительное число каждому натуральному и посмотрим, как можно найти пропущенное число (на следующем рисунке показаны только числа от 1 до 5, но в действительности список продолжается до неопределенности).

Правило, по которому мы назначили эти числа, неясно, но это не имеет значения, поскольку метод работает при любом правиле назначения. В качестве первого шага этого метода сосредоточим наше внимание на цифрах, находящихся после запятой.

Обратим внимание на диагональную линию, начинающуюся в левом верхнем конце, опускающуюся вправо (см. рисунок). Выдающаяся роль этой линии определила название метода — диагональное доказательство.

Число, которое мы ищем (оно осталось без пары), начинается с 0, а знаки после запятой определены числами, появляющимися по диагонали.

НАТУРАЛЬНЫЕ И РАЦИОНАЛЬНЫЕ ЧИСЛА

Можно было бы подумать, будто N и R имеют разные кардинальные числа потому, что N — дискретное множество (то есть его графическое представление заключено в изолированных точках), в то время как R не является таковым (между двумя действительными числами всегда есть другие действительные числа, в R нет изолированных точек).

Однако дело не в этом. Возьмем множество рациональных чисел, которое обычно обозначается буквой Q и в котором содержатся все рациональные числа, то есть те, что можно представить в виде дроби (или в виде частного двух целых чисел). Например, 1/2 = 0,5 и -4/3 = -1,333... рациональные числа, в то время как 2 = 1,4142... и = 3,1415... таковыми не являются. Целые числа включены в рациональные, поскольку, например, 6 = 6/1. Хотя рациональные числа не заполняют всю числовую прямую, они не дискретны: между двумя рациональными числами всегда есть другое рациональное число. Например, между двумя рациональными числами всегда лежит среднее для них число. Так, между 1/3 и 1/2 находится

между 1/3 и 5/12 находится среднее для них число, а между 1/3 и этим средним числом — их среднее число, и так далее (схема выше).

Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг