Анкету LSI-R, разработанную в 1995 году, с тех пор заполнили тысячи заключенных. Специалисты по статистике использовали эти результаты, чтобы построить систему, в которой ответы, имеющие непосредственное отношение к риску рецидива, имели бы больший вес и добавляли больше баллов. После сдачи анкеты осужденные распределяются по категориям высокого, среднего и низкого риска на основе полученных ими баллов. В некоторых штатах, таких как Род-Айленд, эти тесты используются, только чтобы направить осужденных с высоким риском на программы профилактики рецидива во время отбывания тюремного срока. Но в других штатах, в том числе Айдахо и Колорадо, судьи используют эти результаты и при вынесении приговора.
Это несправедливо. Опросник включает обстоятельства рождения и воспитания преступника, данные о его или ее семье, окружении и друзьях. Но подобные детали не должны иметь отношения к уголовному делу или к приговору. В самом деле, если бы прокурор попытался очернить подзащитного, упомянув количество судимостей его брата или уровень преступности в районе, где он живет, адвокат бы тут же воскликнул: «Возражаю, ваша честь!» И разумный судья принял бы это возражение. Таковы основы нашей правовой системы. Нас судят за то, что мы делаем, а не за наше происхождение. И хотя мы не знаем, сколько именно баллов добавляют эти пункты анкет,
Многие скажут, что статистические системы, подобные LSI-R, все же достаточно эффективны в оценке вероятности рецидива – по крайней мере, они более точны, чем интуитивные предположения того или иного судьи. Но даже если мы отложим в сторону, совсем ненадолго, серьезнейшую проблему справедливости, мы обнаружим, что соскальзываем в губительную петлю обратной связи ОМП. Осужденный с «высоким риском», скорее всего, окажется в прошлом безработным выходцем из района, в котором многие его родственники и друзья имели столкновения с законом. Отчасти из-за большого количества баллов, набранного в ходе заполнения анкеты, он получает более длительный тюремный срок, который закроет его на большее количество лет в тюрьме в окружении таких же преступников, как он, – что повышает вероятность его возвращения в тюрьму. В конце концов его выпускают на свободу, и он возвращается все в тот же бедный район, но на этот раз с судимостью, которая еще больше затруднит ему получение работы. Если он совершит еще одно преступление, модель оценки риска рецидива может объявить об очередном своем успехе. Но на самом деле это сама модель вносит вклад в токсичный цикл и помогает его поддерживать. Это ключевое свойство оружия математического поражения.
В этой главе мы познакомились с тремя типами статистических моделей. Бейсбольные модели по большей части можно счесть здоровыми. Они прозрачны, постоянно обновляются, и все допущения и выводы можно легко проследить. Такие модели подпитываются статистикой самой игры, а не прокси-реальностью. Люди, которых их составляют, понимают процесс и разделяют цель модели: выиграть Мировую серию. (Хотя, конечно, это не значит, что многие игроки, как только подойдет время подписывать контракт, не попытаются поспорить с оценкой модели: «Конечно, я сделал двести раз страйк-аут, но только посмотрите на мои хоум-раны…»)
С моей точки зрения, нет ничего плохого и во второй модели, которую мы обсуждали, – гипотетической модели семейных ужинов. Если бы мои дети задались вопросами о допущениях, которые за ней стоят, как экономических, так и диетических, я бы с удовольствием об этом рассказала. И даже если они иногда ворчат, получая очередную порцию зеленого салата, они, вероятно, признают, что моя модель отвечает целям удобства, экономии, здоровья и хорошего вкуса – хотя, возможно, в своих собственных моделях они придадут этим факторам другой вес (и они могут начать создавать свои модели с того самого момента, когда начнут сами покупать себе продукты).
Должна добавить, что моя модель вряд ли когда-нибудь приобретет промышленные масштабы. Не представляю, чтобы сеть супермаркетов
Однако оценка вероятности рецидива, которую мы обсуждали в конце главы, – пример совсем другого рода. Он имеет какой-то дурной привкус. Давайте быстро проверим, не относится ли эта оценка к ОМП, и посмотрим на результат.