Читаем Убийственные большие данные. Как математика превратилась в оружие массового поражения полностью

Дело оказалось весьма запутанным. Школьный округ пригласил консалтинговую компанию Mathematica Policy Research (MPR) из Принстонского университета, чтобы она помогла разработать критерии оценки. Задачей MPR было оценить прогресс в образовании учеников округа, а затем подсчитать, в какой степени улучшение или ухудшение их результатов зависело от учителей. Задача, конечно, была непростой. Исследователи знали, что на результаты может повлиять множество факторов, от социально-экономической ситуации до специфических индивидуальных нарушений способности к обучению. Алгоритмы MPR должны были учитывать эти факторы, и это было одной из причин, по которой они оказались такими сложными.

И в самом деле, попытки вместить человеческое поведение, деятельность и потенциал в алгоритмы – это непростая работа. Чтобы понять, с чем пришлось столкнуться MPR, представьте себе десятилетнюю девочку, которая живет в бедном квартале на юго-востоке города Вашингтон. В конце учебного года она сдает стандартизированный тест для пятого класса. После этого ее жизнь продолжается. У нее могут появиться семейные или финансовые проблемы. Она может переехать в другой дом или переживать за брата, у которого возникли проблемы с законом. Она может страдать из-за собственного лишнего веса или бояться какого-нибудь школьного хулигана. В любом случае в следующем году она сдает еще один стандартизированный тест, теперь уже предназначенный для шестиклассников.

Если вы сравните результаты двух тестов девочки, количество набранных баллов должно остаться стабильным или, в лучшем случае, увеличиться. Но если она наберет меньше баллов, чем в прошлом году, будет очень просто увидеть разницу между ее результатами и результатами более успешных учеников.

Но насколько эта разница возникла по вине учителя? Сложно сказать, и модели MPR располагают лишь несколькими числами для сравнения. В компаниях Больших данных, таких как Google, напротив, исследователи проводят постоянные тесты и отслеживают тысячи переменных. Они могут изменить шрифт рекламного объявления с синего на красный, испытать каждую версию на десяти миллионах пользователей и отследить, на какую из версий пришлось больше кликов. Они используют этот отклик, чтобы оттачивать свои алгоритмы и их действия. И хотя у меня есть много претензий к Google (до этого мы еще доберемся), нельзя не признать, что такой тип тестирования – это эффективное использование статистики.

Попытка подсчитать, какое воздействие один человек может иметь на другого в течение учебного года, – гораздо более сложная задача. «Есть столько факторов, которые вмешиваются в процесс обучения, что проанализировать их крайне сложно», – говорит Высоцки. Более того, попытка оценить эффективность учителя, проанализировав результаты тестов всего лишь 25 или 30 учеников, статистически несостоятельна и просто смехотворна. Эти числа слишком малы, учитывая потенциальное количество вариантов, в которых «что-то пошло не так». В самом деле, если бы мы анализировали учителей со статистической тщательностью интернет-поисковика, нам пришлось бы привлечь для теста тысячи или даже миллионы случайно выбранных учеников. Специалисты по статистике оперируют большими числами, чтобы сбалансировать исключения и аномалии. (И ОМП, как мы увидим, зачастую наказывает тех, кто оказывается исключением.)

Что не менее важно, статистические системы требуют ответной реакции – чтобы вовремя увидеть, что алгоритмы сбились с курса. Специалисты по статистике используют ошибки, чтобы «натренировать» свои модели и сделать их более интеллектуальными. Если Amazon.com в результате ошибочной корреляции начнет предлагать девочкам-подросткам книги по уходу за лужайками, количество кликов резко снизится – и алгоритм будет оттачиваться, пока заново не настроится. Без обратной связи, однако, статистический механизм может и дальше работать с ошибками и искажать анализ, при этом не обучаясь на этих ошибках.

Многие компоненты ОМП, которые я буду обсуждать в этой книге, включая систему оценки прогресса учеников, введенную школьным округом Вашингтона, ведут себя именно так. Они предлагают собственное определение реальности и исходят из него, чтобы оправдать свои результаты. Это самовозобновляющийся, крайне деструктивный – и весьма распространенный тип модели.

Когда система оценивания MPR объявляет Сару Высоцки и 205 других учителей бездарностями, город их увольняет. Но откуда система узнает, что она выдала правильный результат? Ниоткуда. Сама система определила их как бездарностей – и именно в таком качестве они и рассматриваются. Двести шесть «плохих» учителей уходят. Один этот факт призван продемонстрировать эффективность оценивающей модели – ведь она избавляет школьный округ от недостаточно хорошо работающих учителей. Вместо того чтобы искать правду, система оценки становится ее воплощением.

Перейти на страницу:

Все книги серии Цифровая экономика и цифровое будущее

Убийственные большие данные. Как математика превратилась в оружие массового поражения
Убийственные большие данные. Как математика превратилась в оружие массового поражения

Математические алгоритмы с каждым днем все сильнее подчиняют себе нашу жизнь. Более того: по мнению автора книги, профессора математики и финансового аналитика, эти алгоритмы уже превратились в опасное оружие в руках государства и корпораций – и это оружие нацелено в первую очередь на самые бедные и незащищенные слои населения. Новейшие математические приложения, с помощью которых банки и страховые компании отслеживают каждый наш шаг, претендуют на полную объективность, однако на самом деле в них заложены те же предрассудки и предубеждения, что свойственны их создателям – далеким от совершенства человеческим существам. При этом скрытые принципы работы математических моделей и их тайные критерии охраняются как величайшая коммерческая тайна, а их вердикты, подчас очевидно ошибочные и явно вредные, считаются окончательными и обжалованию не подлежат. Добро пожаловать в прекрасный новый мир – мир убийственных Больших данных!

Кэти О'Нил

Обществознание, социология

Похожие книги

Цивилизационные паттерны и исторические процессы
Цивилизационные паттерны и исторические процессы

Йохан Арнасон (р. 1940) – ведущий теоретик современной исторической социологии и один из основоположников цивилизационного анализа как социологической парадигмы. Находясь в продуктивном диалоге со Ш. Эйзенштадтом, разработавшим концепцию множественных модерностей, Арнасон развивает так называемый реляционный подход к исследованию цивилизаций. Одна из ключевых его особенностей – акцент на способности цивилизаций к взаимному обучению и заимствованию тех или иных культурных черт. При этом процесс развития цивилизации, по мнению автора, не всегда ограничен предсказуемым сценарием – его направление может изменяться под влиянием креативности социального действия и случайных событий. Характеризуя взаимоотношения различных цивилизаций с Западом, исследователь выделяет взаимодействие традиций, разнообразных путей модернизации и альтернативных форм модерности. Анализируя эволюцию российского общества, он показывает, как складывалась установка на «отрицание западной модерности с претензиями на то, чтобы превзойти ее». В представленный сборник работ Арнасона входят тексты, в которых он, с одной стороны, описывает основные положения своей теории, а с другой – демонстрирует возможности ее применения, в частности исследуя советскую модель. Эти труды значимы не только для осмысления исторических изменений в домодерных и модерных цивилизациях, но и для понимания социальных трансформаций в сегодняшнем мире.

Йохан Арнасон

Обществознание, социология
Управление мировоззрением. Подлинные и мнимые ценности русского народа
Управление мировоззрением. Подлинные и мнимые ценности русского народа

В своей новой книге автор, последовательно анализируя идеологию либерализма, приходит к выводу, что любые попытки построения в России современного, благополучного, процветающего общества на основе неолиберальных ценностей заведомо обречены на провал. Только категорический отказ от чуждой идеологии и возврат к основополагающим традиционным ценностям помогут русским людям вновь обрести потерянную ими в конце XX века веру в себя и выйти победителями из затянувшегося социально-экономического, идеологического, но, прежде всего, духовного кризиса.Книга предназначена для тех, кто не равнодушен к судьбе своего народа, кто хочет больше узнать об истории своего отечества и глубже понять те процессы, которые происходят в стране сегодня.

Виктор Белов

Обществознание, социология
Мать порядка. Как боролись против государства древние греки, первые христиане и средневековые мыслители
Мать порядка. Как боролись против государства древние греки, первые христиане и средневековые мыслители

Анархизм — это не только Кропоткин, Бакунин и буква «А», вписанная в окружность, это в первую очередь древняя традиция, которая прошла с нами весь путь развития цивилизации, еще до того, как в XIX веке стала полноценной философской концепцией.От древнекитайских мудрецов до мыслителей эпохи Просвещения всегда находились люди, которые размышляли о природе власти и хотели убить в себе государство. Автор в увлекательной манере рассказывает нам про становление идеи свободы человека от давления правительства.Рябов Пётр Владимирович (родился в 1969 г.) — историк, философ и публицист, кандидат философских наук, доцент кафедры философии Института социально-гуманитарного образования Московского педагогического государственного университета. Среди главных исследовательских интересов Петра Рябова: античная культура, философская антропология, история освободительного движения, история и философия анархизма, история русской философии, экзистенциальные проблемы современной культуры.В формате PDF A4 сохранен издательский макет книги.

Петр Владимирович Рябов

Государство и право / История / Обществознание, социология / Политика / Учебная и научная литература
Чего хотят женщины? (сборник)
Чего хотят женщины? (сборник)

Авторы этой книги – одни из самых известных женщин двадцатого столетия. Клара Цеткин – немецкий политик, деятельница международного коммунистического движения, активистка борьбы за права женщин. К. Цеткин является автором идеи Международного женского дня – 8 Марта. Александра Коллонтай – русская революционерка, государственный деятель и дипломат, чрезвычайный и полномочный посол СССР в Швеции.К. Цеткин и А. Коллонтай написали множество работ, посвященных положению женщины в обществе. Обе они сходились в том, что женщина должна быть раскрепощена, освобождена от общественного и мужского рабства, – в то же время они по-разному представляли пути этого раскрепощения. К. Цеткин главный упор делала на социальные способы, А. Коллонтай, ни в коем случае не отрицая их, главенствующую роль отводила женской эмансипации. Александра Коллонтай создала концепцию «новой женщины», самостоятельной личности, отказывающейся от фетиша «двойной морали» в любовных отношениях и не скрывающей своей сексуальности.В книге, представленной вашему вниманию, приводятся лучшие произведения К. Цеткин и А. Коллонтай, которые должны ответить на самый трудный вопрос: чего хотят женщины?

Александра Михайловна Коллонтай , Клара Цеткин

Обществознание, социология