Термины, вынесенные в заголовок, очень часто встречаются в научной и технической литературе последних десятилетий. Это связано с тем, что в наше время в практике проектирования на передний план выступила необходимость решения не одиночных, а комплексных проблем, создания и совершенствования гораздо более сложных, чем это было ранее, технических объектов. Современный специалист весьма часто сталкивается с ситуациями, в которых приходится, с одной стороны, учитывать тенденции технического прогресса отрасли, но и, с другой стороны, — устранять негативные последствия использования устаревших конструкций, устройств и целых технологий. Системный подход — это попытка найти некоторые специфические методы, способные помочь решению всё усложняющегося комплекса проблем, с которыми инженеру приходится сталкиваться на этом пути.
Системные исследования в последние годы получили широкое развитие в самых различных сферах человеческой деятельности. Существуют многочисленные попытки сформулировать, что такое системный подход, системотехника, общая теория систем
, дать этим терминам четкое определение. Разные авторы, однако, используя эти понятия при анализе интересующего их круга проблем, вкладывают в них неодинаковый смысл, и поэтому в настоящее время общепринятой трактовки данных терминов не существует. В то же время, понятие «система» носит ключевой характер в ТРИЗ, и именно поэтому (не претендуя на обобщающий характер наших высказываний) мы ниже изложим свою точку зрения на то, что такое системный подход в случае инженерной творческой деятельности. Как методология преобразования систем она включает в себя следующие структурные объекты (приводимый ниже перечень, естественно, не претендует на исчерпывающую полноту):Понятийный аппарат: — совокупность присущих данному подходу определений и понятий
, таких как система, структура, функция, системное качество, противоречие, модель системы.•Язык описания систем и их взаимодействий (вепольный анализ).
•Законы строения и развития систем (ЗРТС).
•Приемы выявления и анализа новых потребностей.
Приемы анализа
функционирования систем.Приемы
(операторы) преобразования систем, методы и алгоритмы их применения.Приемы синтеза
преобразованной системы.Ряд положений этого перечня будут достаточно подробно рассмотрены на последующих занятиях; в этой вводной лекции мы дадим лишь ряд понятий, необходимых в дальнейшем.
Прежде всего, надо понимать, что каждое научное понятие, в том числе и понятие «система», — это некоторая полезная абстракция, вводимая для выделения различных объектов из окружающего мира для удобства его изучения.
Система
— это некоторая совокупность взаимосвязанных элементов, обладающая свойствами, не сводящимися к свойствам отдельных элементов.Можно различать как естественные, так и искусственные, создаваемые людьми системы (например, технические, социальные).
Под технической системой (а именно с техническими системами мы в этом курсе будем иметь преимущественно дело) будем понимать такую совокупность элементов, которая позволяет ей выполнять некоторую полезную для людей функцию.
Элемент системы — относительно целая ее часть, обладающая некоторыми свойствами, не исчезающими при отделении от системы. Однако в системе свойства отдельных элементов не просто суммируются. Чаще всего часть свойств каждого элемента при вхождении его в систему гасится, нейтрализуется, теряет свою индивидуальность. Но зато каждая система в целом обладает каким-то особым качеством, которое не является результатом простого суммирования свойств составляющих ее элементов. В этой связи говорят, что система обладает особым системным качеством (системным свойством)
.При этом можно выделить два типа проявления системных свойств:
•непропорционально большое изменение свойств, которые имеются у отдельных объектов, составляющих систему; например, биметаллическая пластина значительно сильнее изменяет свою форму при изменении температуры, чем каждая из составляющих ее пластинок в отдельности;
•появление нового свойства, которым не обладает ни один из составляющих ее объектов; автомобиль, состоящий как минимум из двигателя, передачи, движителя, системы управления, обладает свойством перемещать людей и грузы по поверхности земли, что не способны сделать перечисленные выше его составляющие по одиночке.
Отдельные элементы системы являются подсистемами по отношению к рассматриваемой системе, то есть они также могут состоять из элементов, непосредственно взаимодействующих друг с другом, и т. д. В свою очередь, каждая система может рассматриваться как подсистема
(элемент) другой системы более высокого порядка — надсистемы.