Уменьшение содержания CO2
в крови, как при гипервентиляции, может отсрочить появление дыхательного стимула, поскольку, как было сказано ранее, в бульбарный инспираторный центр импульс поступает только при определенном повышенном уровне концентрации этого газа, достижение которого при гипервентиляции запаздывает, потому что в начале задержки дыхания содержание CO2 в крови сильно занижено. Следовательно, гипервентиляция задерживает сигнал тревоги, используемый организмом для предупреждения о достижении предела задержки. Опасность заключается в том, что, прежде чем уровень CO2 поднимется достаточно для стимуляции дыхания, уровень кислорода может упасть ниже критического уровня. По этой причине гипервентиляция категорически запрещается; коротко говоря, она значительно понижает в организме уровень защиты и возможность предупреждения об опасности.У ныряльщика на задержке дыхания сигналом к подъему является ощущение «кислородного голодания» —
На самом деле гипервентиляция приводит к уменьшению CO2
в альвеолах и крови, что, как мы впоследствии увидим, повышает риск гипоксии (чрезмерное уменьшение парциального давления PpO2) и вызывает у человекаВ нормальных условиях перепады парциального давления O2
и CO2 в крови и в альвеолярном воздухе способствуют прохождению O2 из легких в кровь, и CO2 из крови в легкие. Во время погружения увеличение давления внутри легких способствует распространению O2, но и препятствует выходу CO2. Действительно, на глубине 10 метров внутрилегочное давление таково, что CO2 перемещается в обратном направлении: из легких в кровь, а не из крови в легкие. На глубине запасO2
в легких уменьшается гораздо быстрее, чем на поверхности, и одновременно повышается PCO2. Таким образом, сигнал к всплытию появится с запозданием относительно реального остатка кислорода, а это может вызвать у неопытного подводника, плохо знающего собственные возможности, иллюзию, что можно и дальше задерживать дыхание.Во время всплытия давление газа быстро падает, как в легких, так и в крови. При уменьшении давления O2
до гипоксичного уровня у подводника может произойти потеря сознания с последующим обмороком и возникновением риска утопления.Опасность еще больше увеличивается, если на поверхности подводник делал гипервентиляцию, поскольку, как мы уже видели, эта методика дает лишь небольшое увеличение парциального давления кислорода, а по большей части происходит значительное понижение парциального давления углекислого газа. Это приводит к последующему запаздыванию стимуляции дыхательных центров, дающих сигнал тревоги о приближении предела задержки дыхания, который позволяет вовремя вернуться на поверхность для дыхания.
После того, как мы получили самые общие представления о физиологии дыхания и об изменениях, происходящих во время погружения, пришло время проанализировать действие физических законов во время погружений как на задержке дыхания, так и с аквалангом.
Физические законы и погружение
Термином флюид обычно называют как жидкость, так и газ; оба они обладают одним и тем же свойством — принимать форму сосуда, в котором они находятся, а различаются по характеристикам «сжимаемости» и занимаемого объема. Действительно, если жидкости несжимаемы и занимают вполне определенный объем, то газы сжимаемы и стремятся занять все имеющееся пространство. Это помогает нам понять механику диффузии газов во время погружения.
Давление (p) равно соотношению силы (F) к площади поверхности (A) на которую воздействует эта сила.
p = F/A
Когда человеческий организм подвергается давлению окружающей среды, превышающему атмосферное, в нем происходят физиологические изменения, зависящие главным образом от некоторых физических законов, учитывающих изменения давления и касающихся газов, присутствующих в атмосфере Земли. Знание этих физических законов поможет лучше понять физиологические изменения в организме.
Слой воздуха, окружающий Землю, оказывает на нее давление под воздействием сил гравитации, равное давлению 760 мм ртутного столба на 1 см2
площади. Это давление обозначается термином