Читаем Учебное пособие по курсу «Нейроинформатика» полностью

В качестве bi можно выбрать любую точку прямой. Отметим, что для любого набора векторов xij и любой прямой с ненулевым направляющим вектором ci на прямой найдется такая точка bi, что сумма проекций всех точек на прямую x = b + tc будет равна нулю. Выберем в качестве bi такую точку. Второе слагаемое в правой части (11) является r-й координатой суммы проекций всех точек на искомую прямую и, в силу выбора точки bi равно нулю. Тогда получаем формулу для определения bi:

(12)

Из первых двух уравнений (10) получаем формулы для определения остальных неизвестных:

(13)

Поиск решения задачи (4) для данного вида классификации осуществляется по следующему алгоритму:

1. Вычисляем bi по формуле (12).

2. Вычисляем t по первой формуле в (13).

3. Вычисляем ci по второй формуле в (13).

4. Если изменение значения ci превышает заданную точность, то переходим к шагу 2, в противном случае вычисления закончены.

<p>Определение числа классов</p>

До этого момента вопрос об определении числа классов не рассматривался. Предполагалось, что число классов задано исходя из каких-либо дополнительных соображений. Однако достаточно часто дополнительных соображений нет. В этом случае число классов определяется экспериментально. Но простой перебор различных чисел классов часто неэффективен. В данном разделе будет рассмотрен ряд методов, позволяющих определить «реальное» число классов.

Для иллюстрации будем пользоваться пространственной моделью в двумерном пространстве. На рис, 10 приведено множество точек, которые будут разбиваться на классы.

<p>Простой подбор</p>

Идея метода состоит в том, что бы начав с малого числа классов постепенно увеличивать его до тех пор, пока не будет получена «хорошая» классификация. Понятие «хорошая» классификация может быть формализовано по разному. При простом подборе классов как правило оперируют таким понятием, как часто воспроизводящийся класс. Проводится достаточно большая серия классификаций с различным начальным выбором классов. Определяются классы, которые возникают в различных классификациях. Считаются частоты появления таких классов. Критерием получения «истинного» числа классов может служить снижение числа часто повторяющихся классов. То есть при числе классов k число часто повторяющихся классов заметно меньше чем при числе классов k – 1 и k + 1. Начинать следует с двух классов.

Рис. 10. Множества точек для классификации

Рис. 11. Разбиение множества на два (а) и три (б) класса

Рассмотрим два примера. На рис. 10 приведены множества точек, которые будут разбиваться на классы. При каждом числе классов проводится 100 разбиений на классы. В качестве начальных значений ядер выбираются случайные точки.

Сначала рассмотрим множество точек, приведенное на рис. 10а. При классификациях на два класса во всех 100 случаях получаем классификацию, приведенную на рис. 11. Таким образом, получено устойчивое (абсолютно устойчивое) разбиение множества точек на два класса.

В принципе можно на этом остановиться. Однако возможно, что мы имеем дело с иерархической классификацией, то есть каждый (или один) из полученных на данном этапе классов может в дальнейшем разбиться на несколько классов. Для проверки этой гипотезы проведем классификацию на три класса. Во всех 100 случаях получаем одно и то же разбиение, приведенное на рис. 11б. Гипотеза об иерархической классификации получила подтверждение. Предпринимаем попытку дальнейшей детализации — строим разбиение на четыре класса. При этом возникают три различных разбиения, приведенных на рис. 12. При этом разбиение, приведенное на рис. 12в возникает всего два раза из 100. Разбиение, приведенное на рис. 12а — 51 раз, на рис. 12б — 47 раз. Если отбросить редкие классы, то получим набор из семи классов. Один из них воспроизводится 98 раз (красное множество на рис. 12а). Остальные шесть классов образуют две тройки. Каждая тройка состоит из двух классов и класса, являющегося их объединением. Из этого анализа напрашивается вывод о том, что число классов равно пяти. Проверяем это предположение.

Рис. 12. Три варианта классификации на четыре класса

Результаты классификации на пять классов приведены на рис. 13. Выделенные на предыдущем этапе пять «маленьких» классов были воспроизведены 84, 67, 64, 68 и 69 раз. Два «больших» класса, выделенных на предыдущем этапе, были воспроизведены 24 и 30 раз. Остальные классы были получены не более чем 4 раза, а большинство по одному разу. Проверим классификацию на 6 классов. Малые классы были получены 75, 70, 53, 43, 44 раза. Один из больших классов — 16 раз. Из остальных классов один был воспроизведен 24 раза, второй — 19 раз. Все другие классы появлялись не более 10 раз. Всего получено 149 классов.

Рис. 13. Различные варианты классификации на пять классов

Таким образом, получена трехуровневая иерархическая классификация: Два класса первого уровня приведены на рис. 11а. Три класса второго уровня — на рис. 11б. Пять классов третьего уровня — на рис. 13а.

Рис. 14. Классификации на два класса

Рис. 15. Типы классификаций на три класса

Перейти на страницу:

Похожие книги