Из этого вытекают и существенные соображения о том, какого типа задачи нужно давать ученику в период базового обучения. Традиционные учебные задачи таковы, что сначала даются условия – все сведения, необходимые для решения, причем только те, которые достаточны для ее решения. После этого формируется вопрос, на который надо ответить. В реальной жизни это не так: вначале возникает некоторый вопрос, а данных, необходимых для ответа на него, недостаточно. Надо ясно представить себе, что нужно знать для ответа на поставленный вопрос, и активно добыть или разыскать эти данные. Поэтому уже в период обучения нужно давать ученику
Приближая решение задач к реальной жизни, в число задач следует включить и
Мало того, что в реальной жизни может недоставать необходимых данных для принятия решения, имеющиеся данные могут быть бесполезными для ответа на постав ленный вопрос, они могут быть неточными и даже ошибочными, ведь они (не в задач нике, а в реальной жизни) – это результат чьих-то наблюдений и измерений, сделанных различными методами и в различных условиях. А различные методы измерения допускают различную степень точности. Чтобы подготовить ученика к встрече с такими задачами в жизни, имеет смысл в числе учебных использовать и
В краткой статье нет возможности остановиться на многочисленных особенностях, отличающих задачи в реальной жизни от задач, традиционно принятых в учебном процессе. О некоторых из них можно про читать в опубликованных источниках[2]
. На одном из таких отличий, на задачах, допускающих только вероятностное решение, мы остановимся в следующем разделе этой статьи.Современная программа средней школы формирует у ученика жестко детерминированное мышление: любое событие имеет причину, причина и следствие представляются ученику однозначно связанными между собою. Если в ответ на поставленную задачу ученик ответит, что ответ «скорее всего» такой-то, то это воспринимается как нежелание или неумение ученика решить задачу. Сложившаяся педагогическая традиция требует от ученика точного ответа, а не предположения о вероятном ответе.
В реальной жизни это не так. Сплошь и рядом в жизни возникают задачи, для точного решения которых недостает необходимых данных и получить их нет возможности, или точный ответ на вопрос требует большой затраты времени, а дать его нужно очень быстро, и быстрый приблизительный ответ значительно ценнее слишком поздно полученного точного ответа. С необходимостью вероятностного решения в жизни сталкивается врач, когда при тяжелом состоянии пациента и еще неполной ясности представлений о при чинах этого состояния («вероятнее всего, причина в том-то») необходимо решиться на немедленную операцию или избрать иную тактику действий. В похожем положении оказывается судья в сложной ситуации: вероятнее всего, картина право нарушения выглядит так-то, но адвокат не согласен с этим, и полностью опровергнуть его соображения нельзя. В подобных случаях человек (в приведенных при мерах врач и судья) вынужден принять определенное решение о действиях, имея лишь вероятностную характеристику на личной ситуации. От немедленного принятия решения о действиях невозможно уклониться, невозможно и отложить принятие решения: «подождать и пока ничего не делать» – это тоже принятие решения о действиях и столь же ответственное, как любое другое. Совершенно ясно, сколь ответственно такое решение военачальника при некоторой неопределенности его представления об
Следовательно, среди задач, предлагаемых для решения ученикам, должны быть
Начинать использовать такие задачи надо уже в младших классах, где ответ будет формулироваться так: «скорее всего» или «вероятнее всего». В старших классах нужно уже ввести понимание того, что степень вероятности может иметь количественное выражение и должна быть выражена числом.