Во время последнего ледникового периода большая часть Северного полушария была скрыта ледниками. Когда примерно десять тысяч лет назад лед растаял, в океан стекли новые потоки рек. Как и лосось, колюшка размножается в пресной воде, и местные популяции быстро использовали преимущества этих новых мест для нереста.
Но потом ландшафт снова изменился. Когда толща льда высотой в милю накапливается на земле, то поверхность прогибается под его весом. Но как только лед исчезает, земля медленно возвращается в исходное положение. И когда подобное произошло на территории нынешней Канады, часть водных потоков оказалась отрезанной от океана, в результате чего образовались озера. В итоге в этих озерах осталась бывшая ранее морской колюшка.
Подобный процесс происходил с бессчетными тысячами рек, ручьев и протоков, в особенности вдоль западного побережья Северной Америки. Эти водоемы были в геологическом отношении новыми образованиями, недостаточно заселенными: лишь несколько других видов океанической рыбы составили компанию колюшке. Как итог эти новые озерные популяции оказались в абсолютно новых для себя условиях обитания там, где практически отсутствовали хищные рыбы.
Как следствие этого, популяции озерной колюшки, каждая из которых была изолирована в своей собственной «лоханке» и эволюционировала независимо от других, менялись параллельно. Зачем терять энергию и ресурсы, строя защиту против несуществующих хищников? Популяции конвергентно потеряли большую часть своей брони, и их иголки усохли. Генетические исследования показали, что эта параллельная эволюция затронула геном. Во всех озерных популяциях одинаковые генетические изменения воздействовали на эволюцию брони и иголок.
Распространенность конвергенции среди близкородственных популяций и видов вполне понятна. Близкие родственники, как правило, похожи генетически, так что естественный отбор, вероятней всего, будет задействовать одинаковые генетические системы. Более того, родственники чаще похожи во многих фенотипических признаках.
Из-за этих похожестей близкородственные виды и популяции имеют одинаковые эволюционные предрасположенности, которые с большой долей вероятности будут развиваться так, а не иначе. Некоторые эволюционные биологи считают эти предрасположенности привязками или эволюционными тенденциями, которые могут действовать несколькими разными способами. Самый очевидный – это генетическая похожесть близких родственников, но при этом могут возникнуть более незаметные качества. Эволюционировавший у предка признак может мешать каким-то эволюционным вариантам, в результате чего развитие среди потомков данного вида произойдет ограниченным количеством других способов. Либо же предок сможет развить у себя признак, который проложит путь для эволюции второго признака.
Подобное потенцирование, как называют сейчас данный феномен молекулярные биологи, будет обладать таким эффектом, что у всех близкородственных видов разовьется второй признак, тот, который вряд ли возникнет у вида, произошедшего не от этого предка.
На основе всех этих факторов родственные виды, вероятней всего, конвергентно разовьют одинаковые качества, столкнувшись с похожими селективными требованиями. Но это вовсе не означает, что дальние родственники не могут конвергировать. Это, конечно же, происходит, только менее часто.
СЕЙЧАС САМОЕ ВРЕМЯ ненадолго отклониться от темы и подчеркнуть, что конвергенция не обязательно отражает адаптацию к одинаковым обстоятельствам или вообще является результатом адаптации. Причина в том, что естественный отбор – не единственный процесс, заставляющий признаки эволюционировать. Периодически характерные черты эволюционируют случайным образом, в частности, в маленьких популяциях. Признак также может развиться, потому что генетически он связан с другим признаком, который предпочел естественный отбор, или как результат устойчивой миграции из другой популяции. Как следствие, конвергентная эволюция может происходить по случайному совпадению, если у двух популяций развились одинаковые свойства, не связанные с адаптацией. Подобная неадаптивная конвергенция может быть наиболее превалирующей среди родственных популяций или видов из-за их общих эволюционных предрасположенностей.
Примером здесь могут служить пальцы саламандры. У большинства саламандр конвергентно эволюционировали пальцы: их четыре вместо стандартного наследственного комплекта из пяти пальцев. Количество пальцев[46]
у взрослой саламандры определяется тем, сколько клеток участвует в процессе формирования конечностей на стадии эмбрионального развития. Все, что сокращает число клеток в зачатке конечности – например, увеличение размера клетки или общее уменьшение размера тела, – может привести к сокращению количества пальцев. У нас нет доказательств, что подобное конвергентное эволюционное сокращение было вызвано естественным отбором: четырехпалые виды не появляются в каких-то определенных средах обитания, и нет никакого преимущества в том, чтобы иметь меньше пальцев (насколько нам известно).