Второй фактор, способный повлиять на то, станут ли популяции эволюционировать параллельно, связан с тем, существует ли несколько способов решить проблему, поставленную окружающей средой. В третьей главе мы уже обсуждали, что виды, сталкивающиеся со схожими условиями обитания, могут адаптироваться неконвергентно, если у них разовьются разные фенотипы, выдающие одинаковую функциональную реакцию (так хорошие плавательные способности могут быть результатом наличия мощных хвостов, передних или задних конечностей) или если у них есть множество разных функциональных способов адаптироваться к избирательным условиям (так в ответ на появление нового хищника эволюционируют длинные лапы, чтобы лучше убегать, или маскировка).
Но мы также наблюдали, что из-за своей генетической похожести близкородственные популяции с большей вероятностью эволюционируют одинаково, чем дальние родственники.
Таким образом, возникает вопрос: чего ожидать от экспериментальных исследований эволюции микробов, учитывая все эти факторы? В экспериментах Ленски и Рейни реплицированные популяции по большей части эволюционировали одинаково. Является ли это общим правилом?
Оценить данное предположение трудно, потому что исследования изучают эволюцию разными способами. Самыми наглядными являются те исследования, в ходе которых изучаются признаки популяций с целью выяснить, эволюционировали ли они повторно похожим образом, как, например, крупные клетки в экспериментах с E.coli или три разных типа клетки Pseudomonas.
Другой организм, часто участвующий в экспериментах, это знакомый всем дрожжевой грибок Saccharomyces cerevisiae, который люди веками использовали для выпечки, в виноделии и пивоварении. А если говорить о более близких временах, то этот грибок сыграл еще одну роль – модельного организма для исследований в области молекулярной биологии. В отличие от других видов микробов, которые мы обсуждали, дрожжевой грибок – эукариот, как и мы, то есть каждая клетка содержит сформированное ядро, в котором заключена ДНК. В этом аспекте их биология схожа с биологией людей и других крупных организмов.
Но несмотря на то что у них есть ядро, каждая грибковая особь состоит всего из одной клетки. По крайней мере, основная масса. Группа ученых под руководством уже знакомого нам Майкла Травизано (теперь он возглавляет свою собственную лабораторию в университете Миннесоты) решила изучить процесс эволюционного перехода от одноклеточного состояния к многоклеточному – важный рубеж в эволюционной истории жизни. Эволюционных биологов особенно интересует вопрос о том, как произошло данное изменение, потому что это означает, что отдельные организмы теряют свою автономию и начинают совместное развитие для общего блага. Почему вдруг изначально независимые друг от друга клетки сходятся вместе, образуя многоклеточный организм, в котором лишь часть клеток получает возможность размножаться? Возьмем для примера человеческое тело. Из клеток состоит наш мозг, наши глаза, наши ноги, все наше тело.
Но лишь малое количество клеток – яйцеклеток или сперматозоидов – участвуют в процессе репродукции и передают свою ДНК следующему поколению. А зачем тогда все остальные клетки? Это давнишняя проблема, и Травизано хотел разобраться в ней, изучив процесс эволюции в лаборатории.
Но как заставить одноклеточные организмы работать сообща? Ученые предположили, что, произведя отбор клеток более крупного размера, они активизируют эволюцию клеток, группирующихся вместе и образующих более крупную массу. Более ранние подобные попытки закончились ничем. Но команда Травизано справилась со своим успешным планом.
Посчитав, что более тяжелые массы будут быстрее погружаться на дно наполненной жидкостью пробирки, они установили центрифугу, в которой вращали клетки в течение десяти секунд. Тех, которые падали на дно быстрее других, извлекали и помещали в пробирку для последующего размножения в течение двадцати четырех часов. После чего их снова подвергали циклу вращения – процесс, который повторялся ежедневно на протяжении двух месяцев. Такой отбор по принципу быстрого погружения работал в точности так, как и ожидалось, приводя к увеличению размера во всех десяти популяциях.
Клетки ожидаемо сцеплялись, образуя многоклеточные, похожие на снежинки скопления. Более того, механизм амальгамирования был одинаковым во всех десяти популяциях.