Читаем Удивительная физика полностью

Сам автор для практических целей пользуется упрощенной формулой. Так как число в квадрате очень близко к значению ускорения силы тяжести на уровне океана (т. е. не на высокой горе или в глубокой шахте), то формула упрощается и приобретает вид:

Если, например, длина маятника равна 1 м, то период колебаний равен 2 секундам: секунда – туда, секунда – обратно. Значит, имея часы, можно измерять длину. И наоборот, рулетка может стать измерителем времени, а часы – расстояния! Но удобнее, конечно, первый вариант.

Если задаваться необходимым периодом колебаний, то можно вычислить длину маятника по упрощенной формуле:

l = 0,25 T 2

Эта формула тут же подтверждает, что длина маятника с периодом 2 секунды равна 1 м. А интересно, каков будет маятник длиною в час? То есть чтобы период его был равен часу или 3 600 секундам? Подставляем и получаем:

l = 0,25 х 3 600 2 = 3 240 000 м, или 3 240 км!

Да это ни в каком соборе не поместится!

Интересно, а если маятник на Земле (на уровне океана) имеет период в 1 секунду, то каков будет его период на Луне, где ускорение силы тяжести 1,6 м/с2? Так как это в 6,13 раза меньше, чем на Земле, то колебания будут происходить в ^6,13, или 2,47 раза медленнее, а период будет в 2,47 раза больше, или 2,47 секунды. Стало быть, маятниковые часы на Луне будут здорово отставать.

Напротив, на планетах-гигантах, где ускорения силы тяжести огромны, эти часы-ходики, если там их механическая прочность выдержит сильнейшую гравитацию, будут сильно спешить.

На Земле подобное тоже может иметь место. Например, на высоких горах ускорение силы тяжести чуть-чуть меньше, чем на уровне океана. Там ходики будут идти медленнее, но период колебаний маятника будет реагировать на это еще меньше, так как он зависит от корня квадратного из соотношений ускорений сил тяжести. Это отставание практически заметить будет нельзя. Скорее всего, на Эльбрусе, например, ходики будут спешить по сравнению с уровнем Черного моря, так как на высокой горе холоднее, маятник из-за охлаждения укоротится и часы, в соответствии с формулой Гюйгенса, заспешат!

С опусканием в шахту ходики опять же заспешат из-за некоторого увеличения ускорения силы тяжести, но лишь до некоторой глубины, точно указать которую трудно. После нее из-за снижения ускорения силы тяжести ходики снова отстанут (рис. 93), ну а в центре Земли, если мы туда попадем, они и вовсе остановятся. Ибо там невесомость и ускорение силы тяжести равно нулю.



Интересно, что точно так же ходики остановятся в падающем лифте и в спутнике, летящем вокруг Земли с неработающими двигателями, где, как известно, тоже невесомость.

Но если создать искусственную гравитацию вращением спутника, например, вокруг своей оси, то ходики снова заработают, но только в том случае, если колебания маятника будут совершаться в плоскости вращения спутника.

А если нет? Ходики будут всеми силами сопротивляться этому, и что произойдет в результате, вы узнаете чуть дальше.

Что «сотворил» Фуко с маятником?

Наблюдать за качаниями светильников в соборе, оказывается, любил не только Галилей. Эту страсть он передал и своему ученику Винченцо Вивиани. В 1660 г. в отличие от Галилея он обратил внимание на другую особенность колебаний маятника на длинной нити.

Оказывается, плоскость их качаний постоянно отклоняется, причем всегда в одну и ту же сторону – по часовой стрелке, если смотреть на маятник сверху вниз. А в 1664 г. ученый из города Падуи Джованни Полени связал это отклонение с вращением Земли – дескать, Земля вращается, а плоскость колебаний маятника как была, так и остается. Вот и наблюдается это стоящими на Земле людьми как отклонение плоскости качаний маятника.

Но оказывается, это свойство маятника было известно и вездесущим древним. Действительно, новое – это хорошо забытое старое. Вот что писал по этому поводу в своей «Естественной истории» римский ученый Плиний Старший, живший в I в. н. э.: «Есть возможность устроить компас без магнита. Для этого нужно взять маятник и заставить его качаться по определенному направлению. При поворотах корабля маятник будет сохранять в своих качаниях заданное ему направление» (рис. 94).


Рис. 94. Компас Плиния Старшего на корабле

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже