Читаем Удивительная физика полностью

Известно, что порция света, или фотон, испускается атомами в момент перехода с верхнего энергетического уровня на нижний. Обычно это испускание фотонов происходит неупорядоченно – сперва один атом «даст» порцию света, затем – другой. А в лазере, в частности, рубиновом, о котором мы говорили, после того как лампа основательно «накачала» его атомы до возбужденного состояния, стоит хоть одному атому хрома выпустить хоть один фотон, как возникает целая лавина фотонов, испускаемых возбужденными атомами. Фотоны летят от одного торца кристалла до другого, отражаясь в зеркальных покрытиях, и по дороге вызывают вынужденное излучение все у новых и новых атомов хрома. И происходит это не так медленно, как описывает автор, а очень и очень быстро (скорости-то световые!) – за 10-8 – 10-10 с. Из-за такой кратковременности процесса выделенной световой энергии мощность излучения лазера достигает 109 Вт, то есть мощности крупной электростанции! Вот что значит всем атомам сработать «хором». Излучение лазера имеет не только большую мощность, но и малую расходимость. Вспомните, как луч лазера дошел до Луны почти компактным пучком!

Сейчас, кроме кристаллических лазеров, существуют лазеры газовые, а также на жидкостях-красителях. Газовые лазеры в отличие от кристаллических работают не короткими вспышками-импульсами, а непрерывно. Лазеры на красителях могут менять свою частоту (длину волны луча) в довольно широких пределах.

Лазер сейчас применяется столь широко, что даже трудно перечислить все его «специальности» – от резания, сварки, сверления металлов и камней до хирургических операций, в том числе и на глазе. Пораженный способностью лазера «выжигать» живые ткани, автор для интереса попросил друзей «выжечь» ему кусочек таковой на спине. Что ж, запахло немножко паленым, дым отсасывали особым пылесосом, боли не ощущалось. Шрама почти не осталось!

Сейчас стали модными лазерные фонарики-указки. Луч красного света ставит «отметину» на довольно большом расстоянии. К сожалению, дети балуются такими фонариками, направляя луч друг другу в глаза, что опасно. А однажды произошла буквально трагедия – молодые люди направили луч такого фонарика на незнакомого человека. А красное пятнышко этого луча поразительно похоже на пятнышко, оставляемое лазерным прицелом стрелкового оружия. И охранники этого незнакомца, который оказался «важной птицей», открыли пальбу по молодым людям с лазерными фонариками…

Отдельный интерес представляет мощное лазерное оружие. Особенно эффективно оно в космосе, где луч лазера не рассеивается, как в воздухе. Лазер «накачивается» от источников солнечной или накопленной энергии и посылает смертоносный луч, способный за сотни и тысячи километров уничтожить вражескую ракету или спутник. Так как мощности «накачки» в таких лазерах очень велики, то непосредственно энергии солнечных батарей для этого не хватает. Ее приходится запасать в особых накопителях энергии – маховичных или конденсаторных, чтобы потом выделить ее в виде мощнейшего импульса. Ведь лазер не «создает» энергию, он только преобразует ее, причем не с таким уж высоким КПД – 30—40 %.

Поэтому одной из важнейших задач лазерного оружия является обеспечение лазера мощным источником энергии. Автору представляется, что наиболее компактным и легким источником накопленной солнечной энергии мог бы стать супермаховик с мощным генератором. Согласно расчетам, он гораздо легче, компактнее и надежнее батарей из большого числа соединенных друг с другом конденсаторов. В космосе маховик «чувствует себя» особенно хорошо – у него нет веса, и он не «давит» на опоры. Нет и сопротивления воздуха, поскольку в космосе вакуум. Поэтому потери на вращение там – минимальные.

Жидкости и газы

Почему римский водопровод на столбах?

В Италии до сих пор сохранились остатки водопровода, по словам Маяковского, «сработанного еще рабами Рима». Все восхищаются римским водопроводом, и есть почему – это фантастическое сооружение в виде мостов-акведуков петляет, выделывая самые замысловатые кренделя. Один из римских акведуков – Аква-Марциа имеет длину 100 км, хотя по прямой расстояние между его началом и концом вдвое короче (рис. 158).


Рис 158. Римский водопровод (после реставрации)

В чем дело, почему бы не построить водопровод по-современному? Поставить водонапорную башню, развести куда надо трубы под землей, и все обошлось бы во много раз дешевле (рис. 159). Все, писавшие о римском водопроводе, утверждают в один голос: римские инженеры не знали закона сообщающихся сосудов и не могли представить себе, что вода может идти вверх. Поэтому они давали своему акведуку равномерный уклон на всем протяжении пути, что сильно удлиняло и удорожало постройку. Известный популяризатор науки Я. И. Перельман также придерживался этого мнения и сетовал, что, например, на Аква-Марциа «полсотни километров каменной кладки пришлось проложить из-за незнания элементарного закона физики!»



Автор с этим утверждением не согласен и попытается пояснить почему.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже