Это еще не все. Пропустите через центр жидкой масляной сферы длинную ось (палочку или проволоку) и вращайте ее, а вместе с ней и масляный шар. Опыт удастся лучше, если насадить на ось смоченный маслом небольшой картонный кружочек, который весь находился бы внутри шара. Под влиянием вращения шар, совсем как небесные тела, начнет сначала сплющиваться, а затем отделит от себя кольцо. Разрываясь на части, кольцо это образует новые шарообразные капли, которые будут крутиться возле основного шара – масляной сферы (рис. 168, б). За смесь воды со спиртом не переживайте – ничего с ней не сделается от растительного масла. Ее можно будет в дальнейшем употребить по назначению так же, как и любую смесь этилового спирта с водой (например, в медицинских целях).
Итак, всякая жидкость, освобожденная от действия тяжести, принимает свою естественную форму – шарообразную. Из сказанного ранее о дождевой капле (включая и то, что в самом начале падения при небольшой скорости капли можно пренебречь ничтожным сопротивлением воздуха) следует, что падающие порции любой жидкости должны принимать форму шаров так же, как падающие капли дождя. Дробинки же представляют собой не что иное, как застывшие капли расплавленного свинца, который при заводском способе изготовления заставляют падать каплями с большой высоты в воду.
Дробь, отлитая таким методом, называется башенной, потому что при отливке ее заставляют падать с вершины высокой дроболитейной башни. Башни дроболитейного завода достигают в высоту до 45 м. В верхней части башни располагается литейное помещение, а внизу – бак с водой (рис. 169). Капли расплавленного свинца застывают в дробинки еще во время падения; бак с водой нужен лишь для того, чтобы смягчить удар дробинки при падении и предотвратить ее деформацию. Отлитую дробь сортируют и правят. Дробь диаметром более 6 мм, называемую картечью, изготавливают иначе. Ее вырубают из свинцового прутка в виде кусочков, которые потом обкатываются.
Дробь получается более шарообразной формы, чем дождевая капля, у которой передняя часть притуплена, потому, что расплавленный свинец, как и жидкая ртуть, имеет высокое поверхностное натяжение, гораздо большее, чем у воды.
Какой толщины пена?
Что же такое поверхностное натяжение в жидкостях? Многие говорят о нем, но, как автор убедился, представляют себе его очень смутно.
Жидкости состоят из весьма подвижных молекул, совершающих колебательные движения около положения равновесия. Расположены эти молекулы очень близко друг к другу, поэтому жидкости так трудно сжать. Понятно, почему жидкости легко меняют форму – раз их молекулы постоянно «скачут», то «перескоки» происходят легче в направлении действия сил.
Теперь о том, как молекулы взаимодействуют друг с другом. Хотя молекулы электрически нейтральны, на очень малых расстояниях могут взаимодействовать электроны одних молекул с ядрами других. Причем силы взаимодействия могут быть силами как притяжения, так и отталкивания. На очень малых расстояниях, когда молекулы почти вплотную подходят друг к другу, они очень сильно отталкиваются. Не будь этого отталкивания, молекулы тотчас проникли бы друг в друга (места для этого достаточно!) и весь кусок вещества стянулся бы практически до одной молекулы. А при расстояниях, в несколько раз превышающих диаметр молекулы, между ними действуют уже силы притяжения, причем они по мере сближения увеличиваются, до определенного предела, разумеется.
Этим взаимодействием молекул в твердых телах обеспечивается прочность и упругость твердых материалов, а в жидкостях – поверхностное натяжение. Молекулы у поверхности раздела двух сред находятся в иных условиях, чем молекулы в глубине жидкости. Молекулу в глубине жидкости окружают со всех сторон соседние молекулы. Молекула же у поверхности жидкости подвергается воздействию других молекул только со стороны жидкости (рис. 170). Плотность пара, окружающего жидкость, много меньше плотности жидкости. Следовательно, силами взаимодействия молекулы жидкости у ее поверхности с молекулами пара можно пренебречь.
Вспомним, что молекулы притягиваются друг к другу на расстоянии порядка нескольких молекулярных радиусов и отталкиваются на очень близких расстояниях. Силы притяжения, действующие на молекулу поверхностного слоя со стороны всех остальных молекул, дают равнодействующую, направленную вниз. Однако со стороны соседних молекул на данную молекулу действуют и силы отталкивания. Благодаря этому молекула и находится в равновесии. Правда, любая молекула участвует также в тепловом движении. Но для молекул жидкости это движение сводится к колебаниям около некоторых положений равновесия. Причем время от времени молекулы изменяют свои положения равновесия. На место молекулы, ушедшей в глубь жидкости, приходит другая и т. д.