Читаем Удивительная физика полностью

Гондола на этом ветряке размером с приличную квартиру и весом в 100 т (рис. 236). Внутри гондолы помещаются машины для преобразования вращения в электроэнергию. Так как ветроколесо крутится медленно – 30—40 оборотов в минуту, а вал генератора должен иметь не менее 1 500 – 1 800 оборотов в минуту, между ними размещается повышающая передача – мультипликатор весом около 10 т. Да и генератор весит не меньше. Все эти агрегаты во время работы очень горячие – не дотронешься! А рядом проносятся огромные ножи – лопасти в десятки метров длиной. И все это на головокружительной высоте, с которой люди на земле еле видны.


Рис. 236. Типичная ветроэлектростанция мощностью 100 кВт:

а – общий вид; б – лопасть и ее сечения; в – гондола: 1 – генератор; 2 – мультипликатор; 3 – ступица воздушного винта; 4 – сервопривод для установки гондолы «по ветру»


Конечно, ветряк вырабатывает даровую энергию, за нее можно только спасибо сказать. Но ветер дует не всегда, а если и дует, то с разной силой. Как следствие, мощность ветроэлектростанции далеко не постоянная, что нельзя отнести к ее достоинствам. Поэтому, когда позволяют возможности, ветряки объединяют в сети, чаще всего с общей энергосистемой страны или района.

А что же делать, когда энергией от ветряка питается, например, отдельное фермерское хозяйство? Тогда, прежде всего нужна дизель-электрическая установка (движок), которая запускается автоматически при штиле. Но такой штиль, а точнее пауза, длительностью от секунд до минут, может случаться несколько раз в день, если не в час. Что ж, каждый раз запускать движок?

Вот тут мы приближаемся к научным интересам автора. Чтобы не запускать движок так часто, используют различные виды аккумуляторов энергии – электрохимические, как в автомобилях, маховичные, конденсаторные. Электрохимические запасают значительную энергию, но дороги, недолговечны, плохо работают в морозы и имеют малый КПД. Конденсаторы долговечны, но тоже дороги, а энергии запасают в сотни раз меньше (на единицу массы), чем электрохимические.

Маховичные накопители энергоемки, долговечны, имеют высокий КПД… А недостатки? Автор как разработчик не хочет их сам указывать. Пусть о недостатках заявляют конкуренты. Но, безусловно, хороший маховичный накопитель с малыми внутренними потерями, мягко выражаясь, дороговат. О маховичных накопителях энергии подробно написано в разделе «Магия вращательного движения» этой книги. А применять их в ветроэлектростанциях можно следующим образом.


Рис. 237. Маховичный накопитель на ветроэлектростанции:

1 – цепная передача; 2 – генератор; 3 – электропровода; 4 – маховик в корпусе


От ветроколеса длинный вал идет вниз и через повышающую передачу, например цепную, вращает генератор с сидящим на его валу маховиком или даже супермаховиком (рис. 237). Маховик помещен в корпус, из которого выкачан воздух для снижения потерь энергии на вращение. Маховик разгоняется во время порывов ветра и отдает энергию во время пауз. Если башня очень высокая, то генератор в гондоле связывается электропроводами с генератором маховика, образуя так называемый электрический вал. Обычный вал тогда уже не нужен. Расчеты, проведенные специалистами по ветроэнергетике, показали, что в большинстве случаев достаточно запаса энергии в маховике на 5 – 6 минут работы ветроэлектростанции на полной мощности. Тогда движок придется запускать очень редко.

В 30-х гг. прошлого века в городе Курске уже существовала ветроэлектростанция с таким маховичным накопителем, построенная талантливым изобретателем-самоучкой А. Г. Уфимцевым. Энергии маховика хватало для бесперебойного снабжения электроэнергией от ветряка средней мощностью 4 кВт двухэтажного дома изобретателя и даже для освещения части улицы, на которой он жил.

Автор, как специалист по маховичным накопителям, помогает немецким коллегам создавать такие накопители для ветроэлектростанций Германии.

Конечно, хорошо, когда ветряк дает электричество, которым можно и осветить, и обогреть дом. Но для освещения и работы других электроприборов – радио, телевизора – нужна лишь малая часть энергии, необходимой для обогрева помещения, нагрева воды для бытовых целей и т. д. Особенно это касается холодных северных районов, которыми богата Россия. А это уже, по мнению автора, можно сделать без генератора и всей сложной и дорогой электрической части ветряка (рис. 238, а).

Перейти на страницу:

Все книги серии О чем умолчали учебники

Удивительная логика
Удивительная логика

Логику не изучают в школе. Тем не менее, мы пользуемся ее законами с детских лет: учимся размышлять и принимать решения, осмысливаем происходящее, постигаем разные науки и, самое главное, общаемся с другими людьми – поясняем свою позицию, возражаем, спорим, убеждаем…Современный умный, развитый человек просто обязан владеть логическим мышлением – оно упорядочивает полученные знания, придает ясность речи, делает убедительной аргументацию и позволяет добиваться победы в дискуссиях.Книга «Удивительная логика» требует определенного напряжения умственных сил и может служить своеобразной проверкой базовых логических способностей человека. В то же время она позволяет развить персональные интеллектуальные данные и творческие навыки поиска нестандартных решений. Одним словом, она учит мыслить.Тестовым и развивающим целям служат и приведенные в конце издания оригинальные логические задачи.Книга адресована в первую очередь старшеклассникам и студентам, интересующимся логикой и желающим активно использовать ее законы для достижения личного успеха.

Дмитрий Алексеевич Гусев

Научная литература / Философия / Прочая научная литература / Книги Для Детей / Образование и наука / Детская образовательная литература

Похожие книги