Итак, мейоз представляет собой одну из форм непрямого клеточного деления, при котором происходит редукция (уменьшение) числа хромосом. В отличие от митоза, мейоз осуществляется в два этапа. Во время первого мейотического деления (его принято называть редукционным) генетический материал предварительно не удваивается (как при митозе), поэтому дочерние клетки получают лишь по одному партнеру из каждой хромосомной пары. Второе деление представляет собой обычный митоз и никак не влияет на число хромосом. В результате двух последовательных мейотических делений образуются четыре зародышевые (половые) клетки, каждая из которых содержит гаплоидный набор хромосом.
Восстановление диплоидного состояния происходит во время оплодотворения, когда половые клетки сливаются. У животных путевку в жизнь зародышу дает слияние сперматозоида с яйцеклеткой, а семена растений возникают от слияния женской зародышевой клетки (семяпочки) с мужской зародышевой клеткой (пыльцевым зернышком).
Не правда ли, вся эта хромосомная свистопляска как две капли воды похожа на поведение выдуманных Менделем «факторов», которые сегодня называют генами? И действительно: и те и другие содержатся в клетке в двойном наборе, и как в зародыш попадает по одному гену от каждого из родителей, точно так же и зигота (зародышевая клетка после оплодотворения) получает по одной хромосоме каждого «сорта» с материнской и отцовской стороны. Сходство так велико, что едва ли это случайное совпадение. Следует отдать должное прозорливости великого чеха, который, ничего не зная ни о хромосомах, ни о мейозе, столь блистательно разобрался в сути вопроса и вывел законы наследственности, заложив тем самым основы современной генетики.
В начале XX столетия, когда законы Менделя были открыты заново, биологи уже не сомневались, что гены имеют самое прямое отношение к хромосомам. Но хромосома, как известно, построена из белка особого типа и нуклеиновой кислоты. Где же конкретно прячется наследственный фактор и что он собой представляет? Одним словом, что такое ген? Об этом речь пойдет в следующей главе.
Двойная спираль
Когда в 1940-х годах XIX века Матиас Шлейден изучал процессы клеточного деления (об этом упоминалось в предыдущей главе), он описывал рождение дочерней клетки как своеобразное почкование. Разумеется, он ошибался.
Через 30 лет после Шлейдена немецкий цитолог Вальтер Флеминг (1843–1905) отметил любопытный факт: при окрашивании клетки внутри ядра обнаруживается яркое пятно, окрашенное наиболее интенсивно. Флеминг назвал эту субстанцию
Вальтер Флеминг
Уолтер Саттон
А в самом начале прошлого века американский биолог Уолтер Саттон (1876–1916) установил, что поведение хромосом при делении клетки замечательно согласуется с распределением наследственных признаков, описанных основоположником генетики Грегором Менделем. И в самом деле: каждый вид характеризуется строго определенным количеством хромосом, которое сохраняется у потомков, а при половом размножении в дочерние клетки всегда попадает одна хромосома от матери и одна от отца. В конце XIX столетия было установлено, что хромосомы построены из белков и нуклеиновой кислоты (от лат.
Фридрих Мишер
Н. К. Кольцов
Тем не менее, большинство ученых продолжало отдавать пальму первенства белкам. Но вскоре им пришлось пересмотреть свои взгляды. В 1944 году американский бактериолог Освальд Эвери убедительно продемонстрировал, что за наследственные свойства любого организма отвечает дезоксирибонуклеиновая кислота, а в 1953 году британские ученые Джеймс Уотсон, Френсис Крик и Морис Уилкинс построили наглядную модель упаковки этой гигантской молекулы.
Освальд Эвери
Сегодня мы знаем, что все без исключения внутриклеточные процессы – от синтеза белков до размножения клеток – регулируются нуклеиновыми кислотами (они бывают двух типов –
Как же устроена эта молекула жизни?