Для начала специальная компьютерная программа составила более миллиона аминокислотных последовательностей – термодинамически устойчивых и не похожих на известные белки. Из них ученые отобрали 27, трехмерная структура которых (рассчитанная опять-таки компьютером) позволяла предполагать, что они могут проявлять ферментативную активность[54]
. Для каждого такого белка была написана последовательность нуклеотидов, которая могла бы его кодировать, – то есть ген. Каждый такой ген был искусственно синтезирован, а затем внедрен в ДНК бактерии, у которой перед этим был удален один из «естественных» генов. После этого «реконструированные» клетки были высажены на специальную среду, для жизни на которой необходим белок, кодируемый удаленным геном. На такой среде бактерия могла выжить лишь в том случае, если небывалый белок, считанный с искусственного гена, заменит утраченный фермент.В четырех случаях из 27 именно это и произошло: клетки, лишенные жизненно важного гена, успешно росли и размножались. Белок, придуманный исследователями, не только успешно считывался в клетке, но и работал в ней.
Комментарии излишни: если эксперимент принстонских специалистов завершится созданием надежной технологии, можно будет не только синтезировать практически любые вещества, но и создавать организмы, не существующие в природе.
Хотя успехи молекулярной биологии последних десятилетий буквально ошеломляют, обольщаться сверх меры все же не стоит. Например, сравнительно недавно большой коллектив ученых во главе с профессором Киотского университета Акирой Иритани объявил о начале работ по воссозданию живого мамонта из палеолитических останков, похороненных в вечной мерзлоте. По мнению участников проекта, цель может быть достигнута уже через пять-шесть лет.
Источники генетического материала для клонирования – замороженные мамонтята
Большинство ученых весьма скептически относятся к таким заявлениям. Дело в том, что генетический материал мамонтов сохранился в виде мелких фрагментов, поскольку кристаллики льда при замерзании необратимо нарушают тончайшую клеточную структуру, в том числе ядерную мембрану. А цитоплазматические ферменты – нуклеазы, получив доступ к молекулам ДНК, за десятки тысячелетий успели поработать на совесть. Поэтому вместо строгой линейной последовательности генов мы имеем «кашу» из отдельных субъединиц, своего рода рассыпанный типографский набор.
Борис Жуков пишет:
Современные методы работы с нуклеиновыми кислотами позволяют сложить эти фрагменты в исходную последовательность – но, естественно, виртуально. Синтезировать по ней реальные молекулы ДНК длиной в сотню миллионов пар нуклеотидов (средний размер хромосомы мамонта) пока еще никто не пытался. К тому же сначала надо бы как-то узнать, какой фрагмент в какой хромосоме находится, – притом что обычные методы генетического картирования неприменимы к ископаемому материалу.