Тем не менее, химики-аналитики требовались в самых разных областях. Еще в 1844 году немецкий химик Карл Фрезениус (1818–1897), разработавший один из лучших для того времени методов анализа металлов, написал статью о роли аналитика в судебных решениях, о том, что юрист может ожидать от аналитика. В роли судебных экспертов выступали многие известные химики, в числе которых был и Дмитрий Иванович Менделеев. Особенно часто от химиков требовалось установить, было ли причиной смерти отравление, и если да, то чем именно оно было вызвано. В течение сотен лет самым «ходовым» и относительно доступным ядом был мышьяк — в виде его соединений. В средневековье мышьяк считали «королем ядов». Мрачной славе мышьяка во многом способствовали и писатели. Агата Кристи, например, в своих бесчисленных детективах травила героев, как правило, мышьяком. Знали об этом яде и далеко за пределами Европы. Полагают, что впервые упомянул о мышьяке как о яде основатель арабской алхимии Джабир ибн Хайян (Гебер), живший в VIII–IX веках. В китайской классической литературе, как и в европейской, описаны случаи нашумевших убийств посредством мышьяка.
Многочисленные факты случайного и умышленного отравления мышьяком побудили ученых разработать методы обнаружения отравы.
Одну из самых чувствительных реакций на мышьяк открыл в 1836 году английский химик Джеймс Марш (1794–1846), который работал в Королевской Военной академии и был ассистентом знаменитого физика Майкла Фарадея (1791–1867). Свою реакцию Марш разработал после неудачного выступления в суде в качестве эксперта по делу об отравлении мышьяком. До этого мышьяк обнаруживали методов Фрезениуса — по образованию характерного осадка с сероводородом. Но чтобы увидеть осадок, требовалось довольно много вещества. А если мышьяка очень мало?
Марш использовал простую химическую реакцию, в которой мышьяк реагировал с водородом и превращался в летучий мышьяковистый водород — арсин (на латыни мышьяк —
Уже через четыре года методика Марша была использована парижским врачом, испанцем по происхождению, Матео Хозе Бонавентура Орфила (1787–1853). Он участвовал в громком деле по обвинению некоей Мари Лафарж в убийстве мужа. Выйдя замуж по расчету, она вскоре обнаружила, что муж сам хотел поправить женитьбой свои финансовые дела. Расплата наступила быстро: Мари в несколько приемов купила в аптеке мышьяк якобы для уничтожения крыс, и вскоре все было кончено. Несмотря на подозрения родственников несчастного, врач не смог вовремя распознать симптомы отравления. Но когда задело взялся Орфила, успевший в совершенстве овладеть методом Марша, все стало ясно: в каждом исследуемом образце он обнаружил высокие концентрации мышьяка. В 1840 году вдова была осуждена.
В наше время возможности аналитической химии стали поистине фантастическими. Экспертно-криминалистические лаборатории выполняют огромное число исследований, и их заключения в значительной степени способствуют эффективному проведению следствия и судебного разбирательства. Но, конечно, химики-аналитики работают не только судебными экспертами. На результаты химического анализа опираются врачи, когда ставят диагноз больному. Помимо общего клинического анализа у человека могут определять, например, концентрацию глюкозы в крови. Раньше для такого анализа «на сахар» требовалось много времени. (И много крови!) Теперь больной сахарным диабетом может проделать анализ у себя дома, и для этого требуется всего одна маленькая капелька крови.
Еще одно важное применение аналитической химии — определение вредных веществ в окружающей среде: в выбросах промышленных предприятий, в воздухе жилых и производственных помещений, в питьевой и речной воде, в лекарствах, продуктах питания т. д.
Использование различных химических, физических, биологических методов позволило не только значительно увеличить точность анализа и сократить время на его проведение, но и одновременно определить десятки различных компонентов в очень маленьком по размеру образце. Разработаны и неразрушающие методы анализа, когда образец не требуется ни растворять, ни даже отщеплять от него маленький кусочек, и он остается в неизменном виде. Особо чувствительные методы важны при анализе и лунного грунта, и краски со старинной картины, и микропримесей в питьевой воде. Например, в лаборатории лазерной диагностики Московского университета разработан сверхчувствительный метод анализа, позволяющий обнаружить в 1 мл водного раствора несколько пикограммов (т. е. триллионных долей грамма!) некоторых химических элементов. Такие сверхчувствительные методы анализа успешно используются и в космических исследованиях, о чем мы уже говорили ранее.