Читаем Удивительная логика полностью

Средний термин должен быть распределен хотя бы в одной из посылок. О распределенности терминов в простых суждениях речь шла в предыдущей главе. Напомним, что проще всего устанавливать распределенность терминов в простых суждениях с помощью круговых схем: надо изобразить кругами Эйлера отношения между терминами суждения, при этом полный круг на схеме будет обозначать распределенный термин (+), а неполный – нераспределенный (—). Рассмотрим пример силлогизма.


Все кошки (К) – это живые существа (Ж. с).

Сократ (С) – это тоже живое существо.

= Сократ – это кошка.


Из двух истинных посылок вытекает ложный вывод. Изобразим кругами Эйлера отношения между терминами в посылках силлогизма и установим распределенность этих терминов (рис. 40).

Как видим, средний термин (живые существа) в данном случае не распределен ни в одной из посылок, а по правилу он должен быть распределен хотя бы в одной. Ошибка, возникающая при нарушении рассматриваемого правила, так и называется – нераспределенность среднего термина в каждой посылке.

Термин, который был не распределен в посылке, не может быть распределен в выводе. Обратимся к следующему примеру:


Все яблоки (Я) – съедобные предметы (С. п.).

Все груши (Г) – это не яблоки.

= Все груши – несъедобные предметы.


Посылки силлогизма являются истинными суждениями, а вывод – ложным. Как и в предыдущем случае, изобразим кругами Эйлера отношения между терминами в посылках и в выводе силлогизма и установим распределенность этих терминов (рис. 41).

В данном случае предикат вывода, или больший термин силлогизма (съедобные предметы), в первой посылке является нераспределенным (—), а в выводе – распределенным (+), что запрещается рассматриваемым правилом. Ошибка, возникающая при его нарушении, называется расширением большего термина. Вспомним, что термин распределен, когда речь идет обо всех предметах, входящих в него, и нераспределен, когда речь идет о части предметов, входящих в него, именно поэтому ошибка и называется расширением термина.

В силлогизме не должно быть двух отрицательных посылок. Хотя бы одна из посылок силлогизма должна быть положительной (могут быть положительными и обе посылки). Если две посылки в силлогизме отрицательные, то вывод из них или вообще сделать нельзя, или же, если его сделать возможно, он будет ложным или, по крайней мере, недостоверным, вероятностным. Например:


Снайперы не могут иметь плохое зрение.

Все мои друзья – не снайперы.

= Все мои друзья имеют плохое зрение.


Обе посылки в силлогизме являются отрицательными суждениями, и, несмотря на их истинность, из них вытекает ложный вывод. Ошибка, которая возникает в данном случае, так и называется – две отрицательные посылки.

В силлогизме не должно быть двух частных посылок.

Хотя бы одна из посылок должна быть общей (могут быть общими и обе посылки). Если две посылки в силлогизме представляют собой частные суждения, то вывод из них сделать невозможно. Например:


Некоторые школьники – это первоклассники.

Некоторые школьники – это десятиклассники.

=?


Из этих посылок никакой вывод не следует, потому что обе они являются частными. Ошибка, возникающая при нарушении данного правила, так и называется – две частные посылки.

Если одна из посылок отрицательная, то и вывод должен быть отрицательным. Например:


Ни один металл не является изолятором.

Медь – это металл.

= Медь не является изолятором.


Как видим, из двух посылок данного силлогизма не может вытекать утвердительный вывод. Он может быть только отрицательным.

Если одна из посылок частная, то и вывод должен быть частным. Например:


Все углеводороды – это органические соединения.

Некоторые вещества – это углеводороды.

= Некоторые вещества – это органические соединения.


В этом силлогизме из двух посылок не может следовать общий вывод. Он может быть только частным, так как вторая посылка является частной.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже