Читаем Удивительная палеонтология. История земли и жизни на ней полностью

Таким образом, производство кислорода биосферой начинает превалировать над потреблением этого газа (ею же), только если происходит захоронение в осадках неокисленного органического вещества. Этот вывод кажется достаточно парадоксальным и противоречащим расхожим представлениям. Так, например, природоохранная пропаганда вбила в голову широкой публики магическую фразу «Леса – это легкие планеты»; и мало кто дает себе труд задуматься над тем, что в действительности любое сбалансированное сообщество (в том числе тропический лес) потребляет ровно столько кислорода, сколько и производит. Если что и можно назвать «легкими планеты», так это болота, где как раз и идет процесс захоронения неокисленной органики. Поэтому, если мы установим, что в некий период геологической истории происходило интенсивное захоронение органического углерода, то мы вправе будем заключить, что в это время столь же интенсивно накапливался и кислород. А вот оценить темпы захоронения органического углерода в прошлые эпохи вполне возможно. Для этого существует специальный метод, основанный на изучении изотопного отношения 12C/13C в соответствующих осадках (органический углерод, участвовавший когда-либо в реакциях фотосинтеза, обогащен «легким» изотопом 12C).

Несколько лет назад на архипелаге Шпицберген была открыта уникальная по полноте последовательность позднепротерозойских осадков, отлагавшихся в период с 850 до 600 млн лет назад. Исследовав эти осадки на предмет изотопного отношения 12C/13C, Э. Нолль (1996) установил, что на протяжении всего этого времени темпы захоронения органического углерода оставались самыми высокими за всю историю Земли. Изучение позднепротерозойских осадков в других районах мира – в Канаде, Австралии и Южной Африке – подтвердило выводы Нолля. Итак, появлению макроскопической фауны предшествовало резкое увеличение количества свободного кислорода; вряд ли можно счесть это случайным совпадением (рис. 20).

Рис. 20. Ключевые характеристики истории позднего протерозоя. Минимумы на кривой захоронения органического углерода соответствуют ледниковым эпохам и интенсивному образованию железорудных формаций (по Ноллю, 1995)

О том, что на Земле в это время действительно существенно возросло содержание кислорода, могут свидетельствовать и другие факты. Во-первых, в океанах вновь происходит осаждение джеспеллитов, прекратившееся около 1,8 млрд лет назад (см. рис. 16). Это может означать, что кислород впервые насытил глубоководные части океана, располагающиеся ниже фотической зоны, и при этом произошло осаждение еще сохранявшихся в тех глубинах запасов закисного железа. Во-вторых, это было время как минимум трех покровных оледенений, последнее из которых – Лапландское оледенение (600 млн лет назад) – было, по всей видимости, самым крупным за всю историю Земли. Одной из причин начала оледенений считают так называемый обратный парниковый эффект: когда в атмосфере планеты отношение О2/СО2 смещается в сторону кислорода, планета начинает гораздо хуже удерживать тепло, доставляемое центральным светилом.

Все это, вероятно, стало следствием событий, произошедших в биосфере около 1,2 млрд лет назад, когда начался постоянный рост численности и видового разнообразия эукариотного фитопланктона (закончился 600 млн лет назад). Известно, что в планктонных экосистемах детритная пищевая цепь развита очень слабо, а оборот вещества и энергии идет почти исключительно по пастбищной цепи; практически вся мертвая органика «проваливается» из экосистемы вниз, на дно водоема, где и утилизуется в тамошних детритных цепях. Однако донные детритные цепи протерозоя существуют в условиях сильного недостатка кислорода и потому обладают ограниченной «пропускной способностью». Начиная с некоторого момента они перестают справляться с тем нарастающим потоком органики, что поставляется сверху наращивающими свою продуктивность фитопланктонными сообществами. Другим источником органики могут быть лишенные в ту пору сколь-нибудь эффективных консументов («травоядных») водорослевые луга. В результате органический углерод начинает захораниваться в осадках на дне океана; оборотной стороной этого процесса является, как мы теперь знаем, накопление свободного кислорода, приводящее – через обратный парниковый эффект – к оледенению.

Перейти на страницу:

Похожие книги

Метаэкология
Метаэкология

В этой книге меня интересовало, в первую очередь, подобие различных систем. Я пытался показать, что семиотика, логика, этика, эстетика возникают как системные свойства подобно генетическому коду, половому размножению, разделению экологических ниш. Продолжив аналогии, можно применить экологические критерии биомассы, продуктивности, накопления омертвевшей продукции (мортмассы), разнообразия к метаэкологическим системам. Название «метаэкология» дано авансом, на будущее, когда эти понятия войдут в рутинный анализ состояния души. Ведь смысл экологии и метаэкологии один — в противостоянии смерти. При этом экологические системы развиваются в направлении увеличения биомассы, роста разнообразия, сокращения отходов, и с метаэкологическими происходит то же самое.

Валентин Абрамович Красилов

Биология, биофизика, биохимия / Философия / Биология / Образование и наука / Культурология