Что ж, с помощью наземных средств астрономы сделали все, что смогли. Был определен период вращения Сатурна (10 часов 12 минут на экваторе и более и часов в приполярных областях), был определен спектроскопически газовый состав планеты, оказавшийся схожим с составом Юпитера, но с несколько меньшим содержанием водорода (если не считать атмосферы, где все наоборот), была определена масса планеты. Она оказалась равной 95,16 массы Земли, что составляет менее 30 % массы Юпитера. Как следствие, Сатурн имеет меньшую плотность: всего 0,70 г/см3
, что составляет всего 13 % плотности Земли и 52,6 % плотности Юпитера. Он просто недостаточно массивен, чтобы давление газа сильно сжало его внутренние слои. Однако и Сатурн излучает в тепловом диапазоне вдвое больше тепла, чем получает от Солнца, – правда, надо учесть, что получает он гораздо меньше Юпитера, поскольку и расположен значительно дальше, и сам несколько меньше (экваториальный радиус равен 60 268 км, что все-таки на порядок превышает радиус Земли). Нет ни малейших сомнений в том, что механизм тепловыделения Сатурна точно такой же, как у Юпитера и коричневых карликов, – медленное сжатие, еще более медленное, чем у Юпитера. Соответственно, и конвективные процессы в атмосфере Сатурна выражены гораздо слабее. Иногда на поверхности планеты появляются белые пятна, некоторое время спустя растягивающиеся в полосы. По всей видимости, эти пятна образуются вследствие извержений нагретого вещества из глубины, однако они вовсе не настроены принимать вид устойчивых атмосферных вихрей, как на Юпитере. Все говорит за то, что конвекция в атмосфере Сатурна носит более упорядоченный характер, что при относительно малом тепловыделении и неудивительно.Как и Юпитер, Сатурн обладает собственным магнитным полем и радиационными поясами. Это значит, что внутри планеты имеется твердое ядро, окруженное жидким металлическим водородом. В отличие от Юпитера, магнитное поле Сатурна чисто дипольное, почти точно совпадающее с осью вращения планеты. Само собой разумеется, напряженность магнитного поля Сатурна слабее, чем у его более массивного соседа, – ничего иного и не следовало ожидать. Годы, предшествовавшие началу исследования Сатурна космическими аппаратами, принесли мало новой информации собственно о планете. Открывались новые спутники, были замечены «спицы» в кольцах, но и только.
Лишь с началом исследования Сатурна американскими АМС на астрономов обрушился вал новой информации. Опять-таки он больше касался колец и спутников, но и планета преподнесла некоторые сюрпризы. Сенсацией оказалось обнаружение в высоких южных широтах «горячей» области и шестиугольной (а не кольцеобразной) полосы вокруг него (рис. 41).
Конечно, «горячей» эту область можно назвать лишь с большой натяжкой – просто ее температура на несколько градусов выше средней температуры атмосферы планеты, составляющей около 95 К. Поначалу астрономы объясняли этот феномен энергией, получаемой Сатурном от Солнца, так как на момент обнаружения планета была повернула к Солнцу южным полушарием, но позднее инфракрасный спектрометр зонда «Кассини» обнаружил зону локального разогрева и на северном полюсе Сатурна. Более того, вокруг северного полюса Сатурна расположен такой же шестиугольный вихрь. Собственно говоря, самопроизвольное появление упорядоченных структур в таком, казалось бы, хаотичном процессе, как конвекция, был известен и ранее (например, так называемая неустойчивость Бенара[16]
), так что сама по себе шестиугольная структура нашла если не объяснение, то во всяком случае земные аналоги. Сложнее оказалось с объяснением отвода тепла через полюса. Какие конкретно процессы в атмосфере планеты отвечают за этот феномен, пока неясно[17].И все же мир ахнул не от этих нежданных чудес, а от тонкой структуры колец Сатурна (рис. 42), чье изображение впервые передал «Пионер-11».