Читаем Удивительная Солнечная система полностью

В целом процесс формирования планет при формировании звезд есть, по-видимому, процесс неизбежный, и чисто умозрительные построения мыслителей ушедших веков (Джордано Бруно и др.) о множественности миров получили полную поддержку со стороны современной нам науки, что бывает нечасто. Но каким образом могла бы быть открыта планета у одной из ближайших звезд?

Тем же самым, каким в XIX и XX веках были открыты невидимые спутники звезд, слишком массивные, чтобы быть планетами. Понятно, что методы измерений физических характеристик звезд постоянно совершенствуются, это банальность. Чуть-чуть меньшая банальность – то, что совершенствование методов позволило совершить качественный скачок и выявлять на расстояниях в десятки и сотни световых лет уже не тусклые звезды-спутники, а планеты.

Способов три основных и два с крайне ограниченным применением. О некоторых уже говорилось выше, но повторить будет не вредно. Итак, первый из основных способов: выявление волнообразности линии собственного движения звезды. Второй: выявление периодического смещения спектральных линий вследствие ускорения либо замедления движения звезды под действием притяжения планеты (или планет). Третий: обнаружение периодического уменьшения светимости звезды при прохождении планеты по ее диску – совсем как в затменно-переменных звездах. Этот способ годится лишь в том случае, если направление на звезду практически совпадает с плоскостью ее орбиты – или орбита планеты очень мала.

Но именно третьим способом было открыто множество экзопланет – так называют планеты, обращающиеся возле других звезд (от греческого «экзо» – «вне», «снаружи»). Увидеть или сфотографировать их с помощью телескопа крайне сложно, вот и приходится «ловить» периодические слабые колебания яркости звезды. Проблема визуального обнаружения заключается и в слабости самой планеты, и, главное, в ореоле вокруг звезды. Планета попросту тонет в нем. Даже при самых благоприятных атмосферных условиях или, допустим, при наблюдениях из космоса звезда никогда не бывает точкой. Ее изображение, даваемое телескопом, всегда состоит из центрального пятна и окружающих его концентрических колец Эри, быстро слабеющих по мере удаления от центрального пятна. На пятно в идеальном (практически недостижимом) случае приходится 84 % света звезды, а остальное – на кольца. (Чем хуже оптика телескопа, тем шире кольца и тем больше света «перекачивается» в них из центрального пятна.) Таковы законы оптики, спорить с ними бесполезно. Угловые размеры пятна и колец зависят лишь от апертуры оптического инструмента. Апертуру телескопа (иногда называемую входным отверстием и часто – диаметром объектива, хотя для некоторых оптических систем апертура не равна диаметру объектива) нельзя увеличивать до бесконечности – этому помешают технологические и финансовые причины. Но можно применить оптическую интерферометрию, когда два или более разнесенных телескопа объединены в систему. Технологически это очень непросто, но возможно. Например, телескоп VLT (Very Large Telescope), построенный в пустынном чилийском высокогорье, состоит из четырех 8,2-метровых зеркал, способных работать как порознь, так и совместно. Разрешающая способность такой системы определяется уже не апертурой одного зеркала, а базой – расстоянием между зеркалами. С помощью оптической интерферометрии «ловцы» экзопланет пытаются увидеть то, что никакими другими способами увидеть не удается. В последние годы это начало получаться, но пока очень редко. Вдобавок оптическая интерферометрия – пока еще не способ открыть экзопланету, а лишь возможность увидеть экзопланету, открытую другим способом.

Четвертый способ, имеющий гораздо более ограниченное применение, чем затменный, основан на эффекте гравитационного микролинзирования. Из общей теории относительности следует, что в поле тяготения световые лучи должны искривляться, как траектория стального шарика, пущенного по полу и прокатившегося по пологой ямке между ее краем и центром. Метод гравитационного линзирования широко применяется для исследования самых дальних областей Вселенной, когда гравитационная линза (скажем, далекая галактика, едва-едва заметная в крупнейшие современные телескопы) повышает яркость объекта (скажем, очень далекого квазара), находящегося далеко за линзой, и делает возможным его обнаружение. Гравитационное микролинзировaние – в принципе то же самое, но на меньших расстояниях и с меньшими массами гравитационных линз. В качестве линзы может выступать, например, обыкновенная звезда.

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука
Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы