В настоящее время существует три основные теории восприятия магнитных полей животными, в том числе птицами. Первая называется теорией электромагнитной индукции и считается применимой к рыбам, однако у птиц и других животных, по-видимому, отсутствуют высокочувствительные рецепторы, необходимые для такого механизма. Вторая теория имеет отношение к магнитному минералу магнетиту (одному из видов оксида железа), обнаруженному в некоторых бактериях в 1970-х годах и отвечающему за ориентацию бактерий в магнитном поле. Дальнейшие исследования показали, что в организме других видов, таких как медоносные пчелы, рыбы и птицы, также содержатся мельчайшие кристаллы магнетита. В 1980-х микроскопические кристаллы магнетита были найдены в глазах и носовой полости в верхней части клюва – в последнем случае внутри нервных окончаний – у голубей. Как мы убедимся, такая локализация кристаллов выглядит перспективной, если они действительно играют некую роль в ориентации[287]
. Третья теория представляет собой любопытное предположение о том, что восприятие магнитного поля обусловлено некой химической реакцией.В 1970-х годах выяснилось, что химические реакции некоторых типов можно изменить путем воздействия магнитных полей, но в то время никому и в голову не приходило, что подобный процесс способен помочь перелетным птицам не сбиться с пути. Еще примечательнее то, что эти конкретные химические реакции происходят под воздействием света: это побудило группу исследователей в США строить догадки о способности птиц «видеть» магнитное поле Земли[288]
.Эта маловероятная гипотеза побудила Вольфганга Вилчко и его жену Росвиту заняться исследованиями. Из трудов других ученых они знали, что в условиях свободного полета голуби, один глаз которых заклеен непрозрачным пластырем, находят дорогу домой успешнее, если могут видеть правым глазом, а не левым. Следует отметить, что улучшение результативности при открытом правом глазе было более выраженным при облачности (в условиях невидимости солнца). Разумеется, это означало, что птицы не в состоянии пользоваться солнечным компасом, и указывало на то, что восприятие магнитного поля у них, возможно, как-то связано с правым глазом. Такое предположение кажется маловероятным, но Вилчко и его коллеги знали также о высокой степени межполушарной асимметрии у этих птиц, а результаты, полученные в экспериментах с голубями, соответствовали представлениям о том, что левое полушарие (получающее зрительную информацию от правого глаза, как мы видели в главе 1) лучше обрабатывает информацию, связанную с хомингом и ориентацией. Для того чтобы проверить это предположение напрямую, Вилчко обратились к своему излюбленному подопытному виду – зарянке.
С обоими незакрытыми глазами зарянки ориентировались в направлении своих обычных миграций. Но когда горизонтальную составляющую магнитного поля в целях эксперимента повернули на 180° (как в ранних опытах), направление, куда рвались птицы, также изменилось на 180°. Затем эксперимент повторили для зарянок, один глаз которым заклеили непрозрачным пластырем. Если свет воспринимал правый глаз (то есть пластырем был заклеен левый), ориентация птиц оставалась точно такой же, как при обоих глазах, воспринимающих свет. Но если закрывали правый глаз и птица видела свет только левым, зарянки теряли способность ориентироваться, то есть не чувствовали магнитное поле Земли. Эти поразительные результаты указывали, что магнитное поле Земли чувствует лишь правый глаз.
Как же осуществляется этот процесс – «правый глаз / левое полушарие мозга»? Может быть, правый глаз просто более чувствителен к свету? Выясняя это, Вилчко провели еще один опыт, снабдив своих зарянок аналогом контактных линз. Обе «линзы» пропускали одинаковое количество света, но одна была матированной, через нее мир виделся расплывчатым, а другая – прозрачной. Результаты вновь оказались поразительными. Эффект «правый глаз / левое полушарие мозга» сохранился, но, когда зарянки видели мир только правым глазом через матированную линзу, они не могли ориентироваться. С прозрачной линзой на правом глазу они ориентировались так же точно, как прежде.
Это означает, что решающую роль играет не столько сам свет, сколько четкость изображения. По-видимому, способность зарянки видеть контуры и очертания ландшафта обеспечивает соответствующий сигнал для восприятия магнитного поля. Удивительно! Как сказал один из моих коллег, «такое нарочно не придумаешь».