Оптимальный путь можно найти с помощью дифференциального исчисления. Это некий компромисс между перечисленными вариантами.
Анализ включает в себя четыре основных этапа.
(Ясно, что время в пути зависит также от расположения точек А и В и скорости пешехода в обеих частях поля, но эти параметры заданы. Под контролем пешехода остается только
Эти четыре шага требуют знания геометрии, алгебры, а также формул вычисления производных — эти навыки приравниваются к свободному владению иностранным языком, поэтому являются камнем преткновения для многих студентов.
Но окончательный ответ стоит затраченных трудов. Он показывает, что самый быстрый путь подчиняется отношению, известному как закон Снелла. Что? Страшно, что не только свет повинуется этому закону?
Закон Снелла[86]
описывает, как преломляются лучи света при переходе из воздуха в воду. Например, когда лучи солнца попадают в бассейн. Свет в воде движется медленнее, так же как и пешеход по снегу, и отклоняется таким образом, чтобы минимизировать время движения. Подобным способом свет преломляется, когда переходит из воздуха в стекло или пластик, что происходит в линзах ваших очков.Пугает то, что свет ведет себя так, будто он осмысленно изучает все возможные пути[87]
, а затем выбирает лучший.18. Хоть ломтиками, хоть кубиками[88]
Математические знаки и символы часто кажутся загадочными, но лучшие из них — это визуальные ключи к их значениям. Символы нуля, единицы и бесконечности очень напоминают пустую дыру, единичную отметку и бесконечную петлю: 0, 1, ∞. А знак равенства = образован двумя параллельными линиями, поскольку, как писал его создатель валлийский математик Роберт Рекорд, в 1557 году: «Больше не существует двух вещей, которые были бы настолько равными».
В исчислениях самый узнаваемый значок — интеграл ∫. Его изящные линии вызывают в памяти музыкальный ключ или резонаторное отверстие скрипки — подходящее совпадение, учитывая то, что некоторые из очаровательных гармоник в математике выражаются интегралами. Но настоящая причина того, что математик Готфрид Лейбниц выбрал именно этот символ, менее поэтична. Это просто буква S для обозначения суммирования, но с длинной шеей.
А что суммируется — зависит от контекста. В астрономии сила притяжения Земли к Солнцу описывается интегралом. Она представляет собой общее воздействие (то есть сумму) всех сил гравитации, порождаемых каждым атомом Солнца на различных расстояниях от Земли. В онкологии растущая масса опухоли может быть смоделирована с помощью интеграла[89]
. Он позволяет определить общее количество вводимого при химиотерапии лекарственного средства.Понимание того, почему в этих случаях требуется интегральное исчисление, а не обычное суммирование, мы получили в начальной школе. Давайте рассмотрим, с какими трудностями мы столкнулись бы, если бы действительно пытались вычислить силу притяжения Земли к Солнцу. Первая трудность заключается в том, что ни Солнце, ни Земля не являются точками. Это гигантские шары, состоящие из колоссального числа атомов. Каждый атом Солнца — это нечто вроде гравитационного буксира для каждого атома Земли. Поскольку атомы крошечные, то их взаимное притяжение почти бесконечно мало, но их бесконечно много и в совокупности они могут составлять ощутимую силу. И надо каким-то образом просуммировать все их воздействия.