Такое обилие выбора, возможно, отчасти становится причиной недоумения, которое многие из нас испытывают, сталкиваясь с дробями, процентами и десятичными дробями. Ярким примером этому служит фильм «Моя левая нога» (My Left Foot), подлинная история мужественного ирландского писателя, художника и поэта Кристи Брауна. Он родился в большой рабочей семье и страдал от церебрального паралича, не мог говорить и контролировать свои конечности, кроме левой ноги. В детстве его часто называли умственно отсталым, особенно отец, который злился на сына и жестоко с ним обращался.
В ключевой сцене фильма семья сидит за столом. Одна из старших сестер Кристи делает домашнее задание по математике, устроившись рядом с отцом. Кристи, как обычно, сидит в углу комнаты, вертясь на кресле. Его сестра нарушает тишину. «Что такое 25 % от четверти?» — спрашивает она. Отец обдумывает вопрос. «Двадцать пять процентов от четверти? Ух-х-х… Дурацкий вопрос, а? В смысле 25 % — это и
Действительно, удел Кристи — пытаться захватить кусочек мела пальцами левой ноги. Прижав мел к грифельной доске, которая лежит на полу, мальчик сумел нацарапать каракуль, похожий на цифру 1, затем косую черту и еще что-то непонятное. Это число 16, но задом наперед. Расстроенный, он стирает пяткой 6 и пробует снова, но на этот раз мел движется слишком далеко, пересекая 6 и превращая ее во что-то невразумительное. «Это просто какие-то нервные загогулины», — ехидничает отец, отворачиваясь. Кристи закрывает глаза и откидывается, совершенно обессиленный[19].
Кроме мощного драматического воздействия, эта сцена поражает принципиальной жесткостью отца. Непонятно, почему он так убежден, что нельзя иметь четверть четверти? Может быть, он думает, что четверть можно взять только от целого или от чего-то, состоящего из четырех равных частей. Но он не в состоянии понять, что
Так как эти 16 тонких ломтиков составят целый объект, каждый ломтик, то есть 1/16 от целого, и является ответом, который Кристи пытался нацарапать.
Другой случай такой же психической жесткости, но в современном мире цифровых технологий, обошел несколько лет назад весь интернет. Обиженный клиент по имени Джордж Ваккаро записал и разместил в сети свой телефонный разговор с двумя сотрудниками компании Verizon Wireless. Ваккаро жаловался на то, что ему обещали взимать плату за использование данных в размере 0,002 цента за килобайт, но в полученном счете он обнаружил, что с него взяли по тарифу 0,002 доллара за килобайт (в 100 раз больше). Последовавшая за этим беседа возглавила рейтинг лучших пятидесяти комедийных роликов в YouTube.[20]
Вот разговор, который происходит примерно в середине записи между Ваккаро и Андреа, дежурным менеджером компании Verizon Wireless:
В. Признаете ли вы, что есть разница между одним долларом и одним центом?
А. Определенно.
В. Вы согласны, что между половиной доллара и половиной цента тоже есть разница?
А. Конечно.
В. Тогда вы наверняка признаете и существование разницы между 0,002 доллара и 0,002 цента?
А. Нет
В. Нет?
А. Я имею в виду, есть разница… но нет 0,002 доллара.
Несколько мгновений спустя Андреа говорит: «Очевидно, что доллар можно представить как “одну десятую и ноль, ноль”, правильно? Но, чтобы “ноль, запятая, ноль, ноль и два”, так?.. Я никогда не слышал о 0,002 доллара. Это просто неполный цент».
Неумение преобразовывать доллары в центы — это только часть проблемы Андреа. Основная его беда в том, что он не способен представить себе их части.
Из личного опыта могу сказать, что так происходит из-за заблуждений в отношении десятичных дробей. В восьмом классе мисс Стэнтон начала учить нас преобразовывать обыкновенные дроби в десятичные. При делении в столбик мы обнаружили, что некоторые дроби могут быть представлены в виде десятичных, оканчивающихся нулями. Например, 1/4 = 0,2500… ее можно переписать как 0,25, поскольку все нули справа не имеют значения. Другие дроби при преобразовании дают десятичные дроби с повторяющимися в конце цифрами, как, например (цифра 3 в периоде),
5/6 = 0,8333…
Моей любимой была дробь 1/7; в ней при преобразовании в десятичную дробь повторялись каждые шесть цифр (шесть цифр в периоде):
1/7 = 0,142857142857…
Недоумение возникло, когда мисс Стэнтон сказала, что если умножить на 3 обе части простого равенства
1/3 = 0,3333…,
то 1 должна равняться 0,9999…
Я возразил, что это неверно. Неважно, сколько девяток написала бы она, я мог бы поставить столько же нулей после 1,0000… а затем, если вычесть ее число из моего, всегда оставалась бы какая-нибудь маленькая разность вроде 0,0000…01[21].