Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

ГАРМОНИЯ ВСЕЛЕННОЙ

Главным доказательством своей концепции Вселенной чисел пифагорейцы считали музыку: они обнаружили ряд поразительных связей между гармонией звуков и простыми дробями. В результате несложных экспериментов они открыли, что если натянутая струна издает определенный звук, то вместе со струной вдвое меньшей длины она будет издавать гармоничные созвучия, которые сейчас называют октавой. Струна длиной в 2/3 и 1/3 от первой также создают гармоничные звуки.

Сегодня эти числовые аспекты музыки относят к физике колебания струн, которые служат основой для теории волн. Количество волн, помещающихся в заданной длине струны, является целым числом, и эти числа образуют простые соотношения. Если они не укладываются в простую пропорцию, соседние звуки накладываются друг на друга, создавая несогласованные «биения», неприятные для слуха. На самом деле всё намного сложнее и включает особенности восприятия нашего мозга, но в любом случае мы видим физическое обоснование открытия пифагорейцев.

Пифагорейцы говорили о существовании девяти небесных тел: Солнце, Луна, Меркурий, Венера, Земля, Марс, Юпитер и Сатурн плюс центральный огонь, отличный от Солнца. В их космологии числу 10 придавалось столь серьезное сакральное значение, что они включили в эту систему Антихтон (Антиземля, Противоземля) – загадочную планету, скрытую от нас Солнцем.

Это две подобные формы

Как мы уже знаем, целые числа 1, 2, 3 и т. д. естественно приводят нас ко второму виду чисел – дробям. Математики называют их рациональными числами. Это дроби вида a/b, где a и b – целые числа (также b не равно 0, иначе вся дробь не имеет смысла). Дроби могут делить целые числа на сколь угодно малые части, а значит, длину стороны геометрической фигуры можно аппроксимировать настолько близко, насколько мы пожелаем, с помощью рациональных чисел. Кажется вполне естественным, что можно в точности разделить число так, чтобы все длины были рациональными.

Если бы это было возможно, геометрия стала бы намного проще: два любых отрезка можно было бы представить целыми числами, кратными длине небольшого отрезка, и так получить их общую длину, сложив множество копий таких отрезков. Кому-то это может показаться неважным, но мы значительно упростили бы понимание теории длин, площадей и особенно подобия фигур (которые имеют одинаковую форму, но разный размер). С помощью схем, сформированных из бесконечного множества копий одной и той же базовой формы, можно доказать что угодно.

К несчастью, этой мечте не суждено было осуществиться. По легенде, один из пифагорейцев, Гиппас из Метапонта, обнаружил, что это утверждение ошибочно. В частности, он доказал, что диагональ единичного квадрата (квадрата со стороной, равной одной единице), иррациональна, не является дробью. Известно (хоть это и непроверенные данные, но отличная история), что он оплошал, озвучив этот факт, когда пифагорейцы пересекали на лодке Средиземное море. Его «товарищи по цеху» пришли в такое негодование, что вышвырнули его за борт, и он утонул. Но, скорее всего, дело ограничилось его отлучением от братства. Каким бы ни было наказание, оно явно говорит о том, что его открытие не привело пифагорейцев в восторг.

Современное толкование наблюдений Гиппаса состоит в том, что 2 – иррациональное число. На взгляд пифагорейцев, этот факт был ударом в спину их беззаветной вере в то, что корни Вселенной уходят в числа – целые. Дроби – отношения целых чисел – еще кое-как вписывались в это мировоззрение, но для чисел, которые доказуемо не являлись дробями, здесь места не было. Вот и вышло, что утопленный или отлученный бедняга Гиппас стал первой жертвой иррациональности – или, скорее, религиозных убеждений.

<p>Укрощение иррациональности</p>
Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии