Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

«Начала» состоят из 13 книг, выстроенных в логической последовательности. В них обсуждаются геометрия плоскости (планиметрия) и некоторые аспекты геометрии пространства (стереометрии). Важный момент – доказательство существования пяти геометрически правильных многогранников: тетраэдра, гексаэдра (попросту куба), октаэдра, додекаэдра и икосаэдра. Основные фигуры планиметрии – линия и круг, часто встречающиеся в разных сочетаниях: например, треугольник – сочетание трех прямых линий. В стереометрии мы имеем дело с плоскостями, цилиндрами и сферами.

Теорема Пифагора: если треугольник прямоугольный, площадь большого квадрата А равна сумме площадей двух других, В и С

Для современных математиков представляет интерес не столько содержание трудов Евклида, сколько их логическая структура. В отличие от предшественников, он не просто принимает известную теорему как истину. Он ее доказывает.

Что значит доказать теорему? Рассказать своего рода математическую историю, где каждый следующий шаг – логическое следствие предыдущих. Каждое очередное утверждение должно быть подкреплено отсылкой к предыдущим и быть выводом из них. Евклид понимал, что этот процесс не может идти вглубь до бесконечности: он должен с чего-то начинаться, и начальное утверждение не требует доказательств: иначе пришлось бы начинать действия с чего-то еще.

Чтобы запустить процесс, Евклид составил несколько основных определений: четких, ясных утверждений для таких основных «технических» понятий, как линия или круг, по сути очевидных. Типичный пример такого определения: тупым называется угол больше прямого.

Эти определения предоставили терминологию, необходимую для формулировки не требующих доказательств утверждений, которые Евклид разделил на два вида: общие утверждения и постулаты. Типичное общее утверждение: объекты, равные одному и тому же, равны и между собой. А типичный постулат: все прямые углы равны между собой.

Мы уже объединили оба эти типа утверждений в один и называем их аксиомами. Математические аксиомы – исходные утверждения, не требующие доказательств. Мы считаем, что аксиомы – как правила игры, и верим, что они всегда выполняются. Мы уже не задаемся вопросом, верны ли эти правила, – мы уже не думаем, что эта игра единственная в своем роде. Всякий, кто собирается участвовать в какой-то конкретной игре, должен соблюдать ее правила; иначе он волен выбрать другую, но в ней правила первой не будут работать.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

Правильный многогранник, или платоново тело, – выпуклый многогранник, который состоит из равных граней в виде правильных многоугольников и имеет равное число ребер, выходящих из каждой вершины. Пифагорейцы описывали пять таких правильных многогранников.

Пять платоновых тел

• Тетраэдр образован четырьмя правильными треугольниками.

• Куб (гексаэдр) образован шестью квадратами.

• Октаэдр образован восемью правильными треугольниками.

• Додекаэдр образован 12 правильными пятиугольниками.

• Икосаэдр образован 20 правильными треугольниками.

Их связывали с четырьмя стихиями Античности: землей, воздухом, огнем и водой – и с пятым элементом – квинтэссенцией.

Во времена Евклида и позже, почти 2000 лет, математикам такое не могло и в голову прийти. Практически все относились к аксиомам как к самоочевидным истинам, чью незыблемость никто не посмел бы оспорить. Евклид недаром приложил все свои таланты, чтобы сделать аксиомы именно такими, – и почти преуспел. Однако одна – аксиома параллельности – оказалась особенно сложной и не такой уж очевидной. Многие ученые пытались вывести ее из более простых общих понятий. Позже мы увидим, к каким поразительным открытиям привели эти попытки.

Опираясь на эти простые утверждения, «Начала» обеспечивали доказательства всё более сложных геометрических теорем. Например, в книге I, теореме 5 доказывается, что углы у основания равнобедренного треугольника (у которого две стороны одинаковой длины) равны. Эта теорема была известна целому поколению викторианских школьников как pons asinorum, или «мост ослов»: чертеж, используемый в доказательстве Евклида, напоминал мост. Вдобавок это был первый серьезный камень преткновения для школяров, которые пытались зазубрить теорему, а не понять ее. В книге I, теореме 32 доказано, что сумма углов треугольника на плоскости равна 180°. В книге I, теореме 47 сформулирована теорема Пифагора.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Суперпамять
Суперпамять

Какие ассоциации вызывают у вас слова «улучшение памяти»? Специальные мнемонические техники, сложные приемы запоминания списков, чисел, имен? Эта книга не предлагает ничего подобного. Никаких скучных заучиваний и многократных повторений того, что придумано другими. С вами будут только ваши собственные воспоминания. Автор книги Мэрилу Хеннер – одна из двенадцати человек в мире, обладающих Сверхъестественной Автобиографической Памятью – САП (этот факт научно доказан). Она помнит мельчайшие детали своей жизни, начиная с раннего детства.По мнению ученых, исследовавших феномен САП, книга позволяет взглянуть по-новому на работу мозга и на то, как он создает и сохраняет воспоминания. Простые, практичные и забавные упражнения помогут вам усовершенствовать память без применения сложных техник, значительно повысить эффективность работы мозга, вспоминая прошлое, изменить к лучшему жизнь уже сейчас. Настройтесь на то, чтобы использовать силу своей автобиографической памяти!

Герасим Энрихович Авшарян , Мэрилу Хеннер

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Самосовершенствование / Психология / Эзотерика