Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

Виет создал много трудов по тригонометрии, из которых первым был «Математический канон», изданный в 1579 г. Он обобщил и систематизировал разные методы решения треугольников, а именно определение длины всех его сторон и величины углов исходя из другой информации о нем. Он открыл новые тригонометрические тождества, в том числе несколько интересных выражений для синусов и косинусов углов, кратных θ, представленных через синус и косинус угла θ.

Логарифмы

Второй темой этой главы были заявлены логарифмы, или log x, одна из важнейших функций в математике. Прежде всего они были важны, потому что удовлетворяли уравнению

log xy = log x + log y

и тем самым могли использоваться для преобразования умножения (очень трудоемкого действия) в сложение. Чтобы перемножить две величины x и y, сперва надо найти их логарифмы, сложить их и затем найти число, логарифм которого является результатом этого сложения (

антилогарифм). Это и будет произведение ху.

Как только математики составили таблицы логарифмов, они стали доступны любому, кто знаком с методом. С XVI в. вплоть до середины XX в. практически все научные вычисления, особенно астрономические, использовали логарифмы. Однако уже с 1960-х электронные калькуляторы и компьютеры потеснили логарифмы, сделали их ненужными. Но сама концепция остается жизненно важной для математики: логарифмы прочно занимают ведущие роли во многих отраслях этой науки, включая исчисление и комплексный анализ. Кроме того, многие процессы в физике и биологии были описаны в логарифмических функциях.

Современный взгляд на логарифмы определяет их как функцию, обратную показательной. Используя логарифмы с основанием 10, что вполне естественно для десятичной системы счисления, мы говорим, что x является логарифмом y, если y = 10x. Например, поскольку 103 = 1000, логарифм 1000 (с основанием 10) равен 3. Главное свойство логарифмов определяется свойством показательной функции:

10a

+ b = 10a × 10b.

Но чтобы логарифмами можно было пользоваться, необходимо уметь найти соответствующий x для всякого положительного вещественного y. Согласно утверждению Ньютона и большинства ведущих ученых того времени, главная идея состояла в том, что любое рациональное число 10p/q можно определить как корень

q-й степени из 10p. Поскольку любое вещественное число x может сколько угодно близко быть приближенным рациональным числом p/q, мы можем приблизить 10x с помощью 10p/q. Это не самый эффективный способ вычислить
логарифм, но самый простой способ доказать его существование.

Исторически изобретение логарифмов шло совсем не так гладко. У его истоков стоит шотландец Джон Непер, барон Мерчистон. Он всю жизнь увлекался самыми эффективными методами вычислений и в итоге сам изобрел знаменитые палочки Непера (или кости Непера). Начиная с 1594 г. он переходит в более отвлеченную область науки, и ему потребовалось 20 лет, чтобы подготовить свой труд к публикации. Судя по всему, он начал исследования с геометрических прогрессий – последовательностей чисел, где каждое последующее является произведением предыдущего на один и тот же множитель. Например, возведение в степень числа 2:

1 2 4 8 16 32 …

или степени десятки:

1 10 100 1000 10 000 100 000 …

Уже давно было замечено, что сложение показателей степени эквивалентно перемножению степеней. Это удобно, если вы перемножаете две целые степени числа 2 или, например, две целые степени 10. Но между этими числами большой разрыв, и степени 2 или 10 не очень помогут, если придется перемножать, например, 57,681 и 29,443.

ПЛОСКАЯ ТРИГОНОМЕТРИЯ

В наши дни тригонометрия прежде всего развита на плоскости, где геометрия попроще и ее принципы легче понять. Можно только удивляться, как часто новые математические идеи возникают в сложном контексте, а последующие упрощения появляются гораздо позже. Существует теорема синусов и теорема косинусов для треугольников на плоскости, и они стоят того, чтобы на них остановиться. Рассмотрим плоский треугольник с углами А, B и С и противолежащими им сторонами a, b, с.

Тогда теорема синусов имеет следующий вид:

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Суперпамять
Суперпамять

Какие ассоциации вызывают у вас слова «улучшение памяти»? Специальные мнемонические техники, сложные приемы запоминания списков, чисел, имен? Эта книга не предлагает ничего подобного. Никаких скучных заучиваний и многократных повторений того, что придумано другими. С вами будут только ваши собственные воспоминания. Автор книги Мэрилу Хеннер – одна из двенадцати человек в мире, обладающих Сверхъестественной Автобиографической Памятью – САП (этот факт научно доказан). Она помнит мельчайшие детали своей жизни, начиная с раннего детства.По мнению ученых, исследовавших феномен САП, книга позволяет взглянуть по-новому на работу мозга и на то, как он создает и сохраняет воспоминания. Простые, практичные и забавные упражнения помогут вам усовершенствовать память без применения сложных техник, значительно повысить эффективность работы мозга, вспоминая прошлое, изменить к лучшему жизнь уже сейчас. Настройтесь на то, чтобы использовать силу своей автобиографической памяти!

Герасим Энрихович Авшарян , Мэрилу Хеннер

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Самосовершенствование / Психология / Эзотерика