«Развитые способности к решению концептуальных задач и количественному анализу… Опыт работы с количественным анализом в сфере инженерии, финансов, консалтинга и/или других областях либо соответствующее образование. Способность быстро осваивать программные приложения. Опыт работы с моделями в Excel. Предпочтительно, но не обязательно наличие квалификационной степени (например, МВА). Желательно знание методологии управления проектами, инструментов оптимизации процессов (Lean, Six Sigma) либо статистики».
Другие компании тоже нанимают таких людей, но у супераналитиков их гораздо больше. Прямо сейчас Capital One ищет втрое больше аналитиков, чем производственного персонала, – а для банка это редкость. «Мы прежде всего компания аналитиков, – заявил один из руководителей корпорации. – Они – наши главные люди».
Хорошие аналитики должны уметь объяснять сложные понятия простыми словами, а также продуктивно общаться с теми, кто принимает решения. Одна компания, производящая потребительские товары, в штате которой состоит 30 аналитиков, ищет «PhD с человеческим лицом», то есть людей, разбирающихся в математике, статистике и анализе данных и умеющих, помимо того, говорить простым языком бизнеса, укрепляя позиции компании как изнутри, так порой и снаружи. Вот что глава отдела анализа потребительского поведения Wachovia Bank рассказывает о том, какие отношения с другими сотрудниками стараются наладить его подчиненные: «Мы стремимся сделать наших людей частью команды. Мы хотим, чтобы они могли наравне с другими обсуждать ключевые вопросы работы компании, определять, какая информация нужна бизнесменам, и рекомендовать партнерам по бизнесу поступать так или иначе. Мы хотим быть не просто вспомогательным звеном, но и активной, важной частью успеха компании».
Разумеется, специалиста, который поднаторел и в аналитике, и в бизнесе, и в общении, найти нелегко. Когда в компании SAS (это разработчик программного обеспечения и спонсор нашего исследования наряду с Intel) решают, что им потребуется специалист по современным бизнес-программам, таким как прогнозирующее моделирование или рекурсивное секционирование (вид анализа дерева решений, применяемый к очень сложным массивам данных), его начинают искать за полтора года до того, как он должен будет приступить к работе.
Можно сказать, что талант аналитика в начале 2000‑х – это как талант программиста в конце 1990‑х. К сожалению, на американском и европейском рынках труда по-настоящему одаренных аналитиков не так много. Некоторые организации решают эту проблему, заключая контракты с компаниями из Индии (где очень много специалистов по статистике) и других стран. Это хорошая идея в том случае, если иностранные аналитики работают над самостоятельными задачами. Но если от них требуется постоянное обсуждение действий с руководителями бизнеса, расстояние может существенно усложнить работу.
Правильные технологии
Конкурировать в сфере аналитики – значит конкурировать в технологиях. Самые успешные компании не только изучают современные статистические алгоритмы и теорию принятия решений, но и постоянно мониторят и внедряют новинки в области ИТ. В одной компании, производящей потребительские товары, даже построили собственный суперкомпьютер, поскольку пришли к выводу, что имеющиеся на рынке модели им не подойдут. Такие подвиги обычно излишни, но все же для серьезной аналитики вам кое-что понадобится.