Метод прогнозирования продаж, базирующийся на выявлении оценок или коллективного мнения менеджеров/руководителей компании, – это проводимый внутри фирмы-продавца формальный или неформальный опрос ключевых руководителей для получения их оценки будущих продаж. Все оценки экспертов объединяются в прогноз продаж компании – иногда путем простого усреднения индивидуальных оценок. В других случаях явно расходящиеся между собой точки зрения опрашиваемых обсуждаются в группе, где и достигается консенсус. Первоначальные позиции экспертов могут означать не более чем интуитивную догадку того или иного руководителя о будущем развитии событий. Бывает, что мнение руководителя базируется на богатом фактическом материале, а иногда даже на первоначальном прогнозе, выполненном какими-нибудь иными способами.
Метод Дельфи
Метод Дельфи позволяет получить более точный прогноз. Он базируется на интерактивном подходе с повторными измерениями и контролируемой анонимной обратной связью (вместо непосредственного общения экспертов и обсуждения ими своих оценок будущего сбыта). При этом каждый эксперт готовит собственный прогноз на основе имеющихся у него фактов, данных и общего знания среды, в которой работает компания. Затем координатор на основе полученных прогнозов составляет обобщающий отчет и вручает его каждому из участников. Как правило, этот отчет содержит индивидуальные прогнозы каждого эксперта, рассчитанный средний показатель и разбросы оценок. Обычно экспертов, чьи первоначальные оценки резко расходятся с усредненным показателем, просят аргументировать свою точку зрения, и эти мнения также включаются в итоговый документ. Участники «опроса» изучают его и предлагают новый вариант прогноза. Обычно эксперты приходят к единому мнению в результате нескольких итераций. Опыт показывает, что разброс данных постепенно уменьшается, поскольку оценки экспертов сближаются, а совокупное мнение группы дает результат, близкий к объективным показателям.
Объективные методы прогнозирования продаж
Объективные методы прогнозирования продаж базируются в основ ном на количественных (эмпирических) и аналитических данных.
Рыночное тестирование
Метод рыночного тестирования предполагает продажу товара в нескольких считающихся репрезентативными географических регионах для выяснения реакции потребителей, с последующим проецированием полученных данных на весь рынок в целом. Нередко такой метод используется для разработки нового товара или усовершенствования старого.
Многие фирмы рассматривают результаты рыночного тестирования как важнейшее свидетельство отношения потребителей к новому товару и конечный показатель потенциала рынка. Исследования показывают, что примерно три из четырех товаров, получивших одобрение потребителей в ходе рыночного тестирования, добиваются успеха на рынке, а четыре из пяти товаров, не выдержавших тестирование, терпят неудачу. И все же рыночное тестирование имеет ряд недостатков.
• Его проведение связано с большими расходами; оно больше подходит для тестирования скорее потребительских, чем промышленных товаров.
• Проведение рыночного теста может занять много времени.
• Когда какой-нибудь товар тестируется на рынке, ему уделяется значительно больше внимания, чем он сможет впоследствии получить при «естественной» продаже, что создает искаженное представление о его потенциале.
• Рыночный тест «раскрывает карты» конкурентам, у них появляется время на то, чтобы сформулировать собственное предложение еще до того, как тестируемая продукция появится на рынке в полном объеме.
Тем не менее несмотря на свои минусы рыночное тестирование служит весьма эффективным методом прогнозирования продаж. Однако применять его следует использовать лишь после того, как руководство компании тщательно взвесит все его достоинства и недостатки.
Анализ временных рядов
Прогнозирование продаж с использованием анализа временных рядов базируется на анализе данных за прошедшие периоды. В простейшем случае прогноз предполагает, что объем сбыта в следующем году будет равен объему сбыта в текущем году. Такой прогноз может оказаться достаточно точным для зрелой отрасли, характеризующейся незначительными темпами роста рынка. В других обстоятельствах необходимо использовать более сложные методы анализа временных рядов. Здесь мы рассмотрим следующие методы:
• скользящего среднего;
• экспоненциального сглаживания;
• декомпозиции.
Метод скользящего среднего