Читаем Упрямый Галилей полностью

Нет, возразил бы Декарт, такой закон не будет иметь основания, поскольку будет нам индуцирован. Иными словами, Декарт исходил из того, что «на одной только идее регулярности, то есть на идее непрерывно повторяющегося однородного опыта, не может быть основано объективное знание»1559. Мы обязательно, познавая предмет, должны сознавать и тот способ, каким он нам дан, то есть держать в сознании «схему его данности»1560. Для Декарта схемой нашего сознания является пространственность предмета. Вот, собственно, в чем и состоит суть картезианского рационализма1561.

Итак, отбросив перипатетические представления о том, что, к примеру, «в дереве имеются совершенно различные свойства вроде формы огня, качества теплоты» и т.п., Декарт предпочел говорить о том, что «обязательно должно быть в огне»: «я удовлетворюсь тем, что вижу здесь движение его [огня] частиц». Какие же доводы приводит Декарт в поддержку своего мнения?

Во-первых, свидетельства наших наблюдений: «когда пламя сжигает дерево или какое-нибудь другое подобное вещество, мы можем видеть невооруженным глазом, что оно колеблет маленькие частицы этого дерева и отделяет их одну от другой, превращая таким образом самые мелкие в огонь, воздух, дым и оставляя более крупные в виде золы»1562. Таким образом, наличие недоступных нашим чувствам микрочастиц подтверждается их усмотрением «невооруженным глазом». Или иначе: видя, как при горении кусок дерева разделяется на мелкие части, мы можем заключить (мысленно экстраполируя видимое на микроуровень, уровень невидимого), что подобное разделение идет все глубже и глубже, доходя до частиц, которые вследствие своей малости уже недоступны нашему восприятию. Тем самым Декарт переносит все констатации, касающиеся движения макрообъектов, на микроуровень, используя своего рода принцип «масштабной инвариантности» материи, весьма распространенный среди натурфилософов-корпускуляристов его времени.

Во-вторых, корпускулярная трактовка процесса горения прекрасно «спасает явления»: «…Если Вы согласитесь со мной, что есть какая-то сила, быстро приводящая в движение самые мелкие частицы и отделяющая их от более крупных, я думаю, что одно это может произвести в дереве те же самые изменения, которые наблюдаются, когда оно горит»1563. Иными словами, Декарт предлагает принять на микроуровне, то есть уровне причин, некоторое объяснение (разумеется, ясное и отчетливое) главным достоинством которого является его соответствие наблюдаемой картине. То, что таких моделей может быть несколько и каждая будет успешно «спасать явления», серьезно не обсуждается.

Читатель, сообразивший, куда клонит автор, разумеется, тут же возразит: но разве использование моделей не является общепринятым методом познания? К примеру, мы решаем задачу о движении тела, брошенного под углом к горизонту. Разве мы не отвлекаемся от формы тела, от сопротивления воздуха, не вводим системы координат и т.п.? Когда мы рассматриваем поведение газа, разве мы не используем модель идеального газа или какие-то модельные представления о взаимодействии частиц газа с целью приблизить наше описание к реальному газу? Разве, описывая электронное строение молекул методами квантовой химии, исследователь не выбирает наиболее подходящее по тем или иным критериям приближение (то есть опять-таки модель)? Разумеется, все это так, но…

Если (для простоты и конкретности) обратиться к моделям, использовавшимся в науке начала Нового времени, то нетрудно заметить фундаментальное различие между двумя их типами, которые условно назову «картезианскими» и «галилеевскими». В чем специфика первых? Для ответа на этот вопрос продолжим рассмотрение натурфилософских рассуждений французского философа и его попыток решить задачу о свободном падении тел.

Декарт не просто декларирует корпускуляристскую позицию, он далее, в пятой главе «Le Monde», переходит к классификации частиц, разделяя их на три разновидности (три типа). К первому типу он относит корпускулы огня, не имеющие «определенной величины, фигуры и расположения»1564: «элемент огня можно рассматривать как самую тонкую и самую проникающую из всех жидкостей»1565. Огненные частицы движутся «значительно быстрее, нежели частицы любого другого тела»1566, а потому «частицы пламени захватывают и переносят с собой частицы того тела, с которым они приходят в соприкосновение и которое не оказывает им достаточного сопротивления»1567.

Ко второму типу Декарт относит частицы воздуха, которые «в отличие от первого элемента <…> должны обладать известной величиной и фигурой и быть круглыми (то есть шарообразными. – И.Д.) и связанными друг с другом, подобно песчинкам или пылинкам (странная аналогия! – И.Д.). Они не могут так хорошо расположиться и так прилегать друг к другу, чтобы вокруг них не оставалось всегда небольших промежутков, таких, что скорее в них проникнет первый элемент, чем частицы второго элемента изменят свою фигуру, для того, чтобы заполнить промежуток»1568.

Перейти на страницу:

Все книги серии История науки

Фуксы, коммильтоны, филистры… Очерки о студенческих корпорациях Латвии
Фуксы, коммильтоны, филистры… Очерки о студенческих корпорациях Латвии

Работа этнолога, доктора исторических наук, ведущего научного сотрудника Института этнологии и антропологии РАН Светланы Рыжаковой посвящена истории, социальному контексту и культурной жизни академических пожизненных объединений – студенческих корпораций Латвии. На основе широкого круга источников (исторических, художественных, личных наблюдений, бесед и интервью) показаны истоки их формирования в балтийском крае, исторический и этнокультурный контексты существования, общественные функции. Рассказывается о внутреннем устройстве повседневной жизни корпораций, о правилах, обычаях и ритуалах. Особенное внимание привлечено к русским студенческим корпорациям Латвии и к биографиям некоторых корпорантов – архитектора Владимира Шервинского, шахматиста Владимира Петрова и его супруги Галины Петровой-Матисс, археолога Татьяны Павеле, врача Ивана Рошонка и других. В книге впервые публикуются уникальные иллюстрации из личных архивов и альбомов корпораций.

Светлана Игоревна Рыжакова

Документальная литература
Загадка «Таблицы Менделеева»
Загадка «Таблицы Менделеева»

Согласно популярной легенде, Д. И. Менделеев открыл свой знаменитый Периодический закон во сне. Историки науки давно опровергли этот апокриф, однако они никогда не сомневались относительно даты обнародования закона — 1 марта 1869 года. В этот день, как писал сам Менделеев, он направил первопечатную Таблицу «многим химикам». Но не ошибался ли ученый? Не выдавал ли желаемое за действительное? Известный историк Петр Дружинин впервые подверг критике общепринятые данные о публикации открытия. Опираясь на неизвестные архивные документы и неучтенные источники, автор смог не только заново выстроить хронологию появления в печати оригинального варианта Таблицы Менделеева, но и точно установить дату первой публикации Периодического закона — одного из фундаментальных законов естествознания.

Петр Александрович Дружинин

Биографии и Мемуары
Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки
Упрямый Галилей
Упрямый Галилей

В монографии на основании широкого круга первоисточников предлагается новая трактовка одного из самых драматичных эпизодов истории европейской науки начала Нового времени – инквизиционного процесса над Галилео Галилеем 1633 года. Сам процесс и предшествующие ему события рассмотрены сквозь призму разнообразных контекстов эпохи: теологического, политического, социокультурного, личностно-психологического, научного, патронатного, риторического, логического, философского. Выполненное автором исследование показывает, что традиционная трактовка указанного события (дело Галилея как пример травли великого ученого церковными мракобесами и как иллюстрация противостояния передовой науки и церковной догматики) не вполне соответствует действительности, опровергается также и широко распространенное мнение, будто Галилей был предан суду инквизиции за защиту теории Коперника. Процесс над Галилеем – событие сложное, многогранное и противоречивое, о чем и свидетельствует красноречиво книга И. Дмитриева.

Игорь Сергеевич Дмитриев

Документальная литература / Публицистика / Прочая документальная литература / Документальное

Похожие книги