В 1948 г. Гамов и его коллеги Ральф Альфер и Роберт Херман вычислили, что температура остаточного излучения Большого взрыва сегодня должна быть примерно на пять градусов выше абсолютного нуля. (Реальная его температура составляет 2,73 K.) Такова температура Вселенной после миллиардов лет остывания.
Это предсказание подтвердилось в 1964 г., когда Арно Пензиас и Роберт Вильсон при помощи гигантского радиотелескопа в Холмделе обнаружили в космическом пространстве это остаточное излучение. (Сначала они решили, что фоновое излучение объясняется каким-то дефектом их аппаратуры. По легенде, они поняли свою ошибку, когда прочли лекцию в Принстоне и кто-то в аудитории сказал: «Либо вы регистрируете птичий помет на антенне, либо возникновение Вселенной». Для проверки им пришлось тщательно соскрести с антенны радиотелескопа весь голубиный помет.)
Сегодня это микроволновое реликтовое излучение, пожалуй, самое убедительное и весомое свидетельство в пользу Большого взрыва. Как и предсказывалось, недавние спутниковые снимки фонового излучения показывают однородный огненный шар энергии, равномерно распределенный по Вселенной. (Когда вы слышите помехи в радиоприемнике, их источником в определенной мере является Большой взрыв.)
Мало того, спутниковые фотографии сегодня настолько качественны, что на них можно обнаружить ничтожную рябь на фоновом излучении, обусловленную квантовым принципом неопределенности. В момент рождения Вселенной происходили, судя по всему, квантовые флуктуации, которые и вызвали эту рябь. Идеально гладкий Большой взрыв нарушил бы принцип неопределенности. Мелкая рябь со временем расширилась вместе с Большим взрывом и при этом породила все те галактики, которые мы видим. (Более того, если бы наши спутники
Это дает нам замечательную новую картину квантовой теории. Своим существованием в галактике Млечный Путь в окружении миллиардов других галактик мы обязаны крохотным квантовым флуктуациям во время Большого взрыва. Миллиарды лет назад все, что вы видите вокруг, было крохотной точкой в этом фоновом излучении.
Следующий шаг вперед был сделан, когда удалось применить достижения квантовой теории и Стандартной модели к общей теории относительности.
Воодушевленные успехом Стандартной модели в 1970-е гг., физики Алан Гут и Андрей Линде задались вопросом: можно ли применить уроки, извлеченные из Стандартной модели и квантовой теории, к Большому взрыву?
Вопрос этот был новаторским, поскольку Стандартная модель в космологии в то время еще не применялась. Гут заметил, что два загадочных аспекта Вселенной невозможно объяснить Большим взрывом в том виде, каким его представляли до того момента.
Во-первых, существует проблема кривизны пространства во Вселенной. Теория Эйнштейна гласит, что ткань пространства-времени должна обладать легкой кривизной. Но при анализе кривизны Вселенной кажется, что на самом деле она намного более плоская, чем предсказывает теория Эйнштейна. Больше того, создается впечатление, что наша Вселенная совершенно плоская с точностью до экспериментальной погрешности.
Во-вторых, она намного более однородна, чем должна бы быть. В процессе Большого взрыва в первоначальном огненном шаре обязательно должны были присутствовать нерегулярности и отклонения от идеала. Однако Вселенная представляется вполне однородной, в каком бы направлении мы ни смотрели в небеса.
Оба этих парадокса можно разрешить с привлечением квантовой теории и явления, которое Гут назвал инфляцией. Во-первых, согласно его идее, Вселенная пережила этап сверхскоростного расширения – намного более быстрого, чем то, что первоначально постулировалось для Большого взрыва. Это фантастическое расширение сделало Вселенную в основном плоской и устранило ту кривизну, которая имелась поначалу.
Во-вторых, первоначальная Вселенная могла быть нерегулярной, но какая-то крохотная ее часть оставалась однородной, и именно она в процессе инфляции раздулась до громадных размеров. Это позволяло объяснить, почему Вселенная сегодня выглядит такой однородной: мы происходим из крохотного однородного кусочка более масштабного огненного шара, рожденного Большим взрывом.
Инфляция влечет за собой далеко идущие последствия. Из нее следует, в частности, что видимая Вселенная вокруг нас представляет собой на самом деле крохотный, пренебрежимо малый кусочек гораздо более масштабной вселенной, которую мы, однако, никогда не увидим, поскольку она находится слишком далеко.