Вопросы, однако, вызывает то, что в этом реликтовом излучении присутствуют неправильности, или пятна, которые мы не в состоянии объяснить. Высказываются предположения, что это следы столкновений с другими вселенными. В частности, существует Холодное пятно – необычно холодная отметина на однородном в остальном фоновом излучении, которая, по предположениям некоторых физиков, может оказаться остатком какой-то связи или столкновения нашей Вселенной с какой-то другой параллельной вселенной, произошедшего в начале времен. Если выяснится, что эти странные отметины действительно являются следами взаимодействия нашей Вселенной с параллельными вселенными, то теория мультивселенной, возможно, покажется скептикам более правдоподобной.
Уже существуют планы разместить детекторы гравитационных волн в космосе, что позволит уточнить расчеты.
Еще в 1916 г. Эйнштейн показал, что гравитация распространяется в виде волн. Подобно тому как расходятся концентрические круги от брошенного в пруд камня, пучности гравитации должны расходиться в пространстве со скоростью света. Однако они, по предположению Эйнштейна, настолько слабы, что обнаружить их вряд ли удастся в обозримом будущем.
Он оказался прав. Только в 2016 г., через сто лет после его предсказания, ученым впервые удалось зарегистрировать гравитационные волны. Громадные детекторы уловили сигналы от двух черных дыр, столкнувшихся в пространстве около миллиарда лет назад. Каждый из этих детекторов, построенных в штатах Луизиана и Вашингтон, занимает территорию площадью в несколько квадратных километров. По форме они напоминают букву L, вдоль каждого плеча которой направлены лазерные лучи. Встречаясь в основании буквы, два луча образуют интерференционную картину, которая настолько чувствительна к вибрациям, что смогла уловить следы столкновения черных дыр.
За свою новаторскую работу трое физиков – Райнер Вайсс, Кип Торн и Барри Бариш – получили в 2017 г. Нобелевскую премию.
Чтобы добиться еще большей чувствительности, есть планы отправить детекторы гравитационных волн в открытый космос. Новая система, известная как Космическая антенна для лазерной интерферометрии (LISA, Laser interferometry space antenna), сумеет, возможно, уловить вибрации, возникшие в момент самого Большого взрыва. Один из вариантов LISA состоит из трех спутников в космосе, связанных друг с другом сетью лазерных лучей. Каждая сторона треугольника составит около 2,5 млн км. Когда гравитационная волна Большого взрыва попадет на детектор, она вызовет небольшие колебания лазерных лучей, которые можно будет измерить при помощи чувствительных приборов.
Конечная цель этой программы – записать ударные волны Большого взрыва, а затем «прогнать пленку» задом наперед, чтобы получить наилучшее возможное представление об излучении до Большого взрыва. Волны, существовавшие до Большого взрыва, затем нужно будет сравнить с тем, что предсказывают разные варианты теории струн. Это, возможно, позволит получить численные данные о мультивселенной до Большого взрыва.
Не исключено, что при помощи еще более совершенных устройств, чем LISA, ученые смогут получить «детские фото» нашей Вселенной и даже найти свидетельства той пуповины, что связывала нашу новорожденную Вселенную с материнской вселенной.
Еще один распространенный аргумент против теории струн связан с тем, что в соответствии с ней мы фактически живем в десяти или одиннадцати измерениях, однако экспериментальных подтверждений этому нет.
Но этот аспект на самом деле, возможно, удастся проверить при помощи уже имеющихся инструментов. Если наша Вселенная трехмерна, то сила тяготения объектов снижается обратно пропорционально квадрату разделяющего их расстояния. Этот знаменитый закон Ньютона ведет наши космические зонды сквозь пространство на миллиарды километров с захватывающей дух точностью, так что мы, если бы захотели, вполне могли бы провести аппараты через кольца Сатурна. Но знаменитый закон обратных квадратов Ньютона проверяется только на астрономических расстояниях, а не в лаборатории. Тот факт, что сила тяготения на малых расстояниях не подчиняется обратно-квадратичному закону, может свидетельствовать о наличии высших измерений. Например, если бы Вселенная имела четыре пространственных измерения, то гравитация должна была бы убывать пропорционально кубу расстояния. (Если бы Вселенная имела
Однако в лаборатории сила тяготения между двумя объектами измеряется чрезвычайно редко. Такие эксперименты сложны, поскольку гравитационные силы в лаборатории очень малы, но в Колорадо уже проведены первые измерения и получены отрицательные результаты, то есть обратно-квадратичная зависимость Ньютона по-прежнему выполняется. (Но это означает лишь, что дополнительных измерений нет в Колорадо.)