Читаем Уродливая Вселенная. Как поиски красоты заводят физиков в тупик полностью

102 Vaidman L. 2012. Time symmetry and the many worlds interpretation. In: Saunders S., Barrett J., Kent A., Wallace D., editors. Many worlds? Everett, quantum theory, and reality. Oxford, UK: Oxford University Press, p. 582; Tegmark M. 2003. Parallel universes. Scientific American, May 2003.

103 Mermin N. D. 2016. Why quark rhymes with pork and other scientific diversions. Cambridge, UK: Cambridge University Press; Carroll S. 2014. Why the many-worlds formulation of quantum mechanics is probably correct. Preposterous Universe, June 30, 2014. www.preposterousuniverse.com/blog/2014/06/30/why-the-many-worlds-formulation-of-quantum-mechanics-is-probably-correct/

104 Bell M. et al. 2001. John S. Bell on the foundations of quantum mechanics. River Edge, NJ: World Scientific Publishing, p. 199.

105 Polkinghorne J. 2002. Quantum theory: a very short introduction. Oxford, UK: Oxford University Press, p. 89.

106 Tegmark M. 2015. Our mathematical universe: my quest for the ultimate nature of reality. New York: Vintage, p. 187 (Тегмарк М. Наша математическая Вселенная. В поисках фундаментальной природы реальности. М.: Corpus, 2016. – Прим. перев.); Tegmark M. 2003. Parallel universes. Scientific American, May 2003.

107 Kent A. 2014. Our quantum problem. Aeon, January 28, 2014.

108 McAllister J. W. 1996. Beauty and revolution in science. Ithaca, NY: Cornell University Press.

109 Orzel C. 2010. How to teach quantum physics to your dog. New York: Scribner.

110 Sparkes A. et al. 2010. Towards robot scientists for autonomous scientific discovery. Autom. Exp. 2: 1.

111 Schmidt M., Lipson H. 2009. Distilling free-form natural laws from experimental data. Science. 324: 81–85.

112 Krenn M. et al. 2016. Automated search for new quantum experiments. Phys. Rev. Lett. 116: 090405.

113 Цитируется по: Ball P. 2016. Focus: computer chooses quantum experiments. Physics. 9: 25.

114 Powell E. 2011. Discover interview: Anton Zeilinger dangled from windows, teleported photons, and taught the Dalai Lama. Discover Magazine, July—August 2011.

115 Sørensen J. J. W. H. et al. 2016. Exploring the quantum speed limit with computer games. Nature. 532: 210–213.

116 Wigner E. P. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Comm. Pure. Appl. Math. 13: 1–14. (Вигнер Е. 1968. Непостижимая эффективность математики в естественных науках. Успехи физических наук. 94: 535–546. – Прим. перев.)

117 Hooper D. 2008. Nature’s blueprint. New York: Harper Collins, p. 193.

118 Castelvecchi D. 2012. Is supersymmetry dead? Scientific American, May 2012.

119 Gross D. 2005. Einstein and the search for unification. Curr. Sci. 89 (12): 25.

120 Цитируется по: Cho A. 2007. Physicists’ nightmare scenario: the Higgs and nothing else. Science. 315: 1657–1658.

121 Wilczek F. 2016. Power over nature. Edge, April 20, 2016. www.edge.org/conversation/frank_wilczek-power-over-nature

122 McAllister J. W. 1996. Beauty and revolution in science. Ithaca, NY: Cornell University Press.

123 Mulvey P. J., Nicholson S. 2014. Trends in physics PhDs. Focus On, February 2014. College Park, MD: AIP Statistical Research Center.

124 Forman P. et al. 1975. Physics circa 1900. In: McCormmach R., editor. Historical studies in the physical sciences, Volume 5. Princeton, NJ: Princeton University Press.

125 Sinatra R. et al. 2015. A century of physics. Nat. Phys. 11: 791–796.

Перейти на страницу:

Все книги серии Сенсация в науке

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература