Читаем Уродливая Вселенная. Как поиски красоты заводят физиков в тупик полностью

А интуитивное понимание чего-либо приходит тогда, когда вы с этим чем-то сталкиваетесь. Пощупать квантовую механику – вообще без каких-либо уравнений – можно в видеоигре «Квантовые ходы» (Quantum Moves)[78]. В этой игре, созданной физиками из Орхусского университета в Дании, игроки зарабатывают очки, когда находят эффективные решения квантовых проблем, например, перемещая атомы из одной потенциальной ямы в другую. Смоделированные атомы подчиняются законам квантовой механики. Они выглядят не как маленькие шарики, а как причудливая жидкость, которая подпадает под действие принципа неопределенности и может туннелировать из одного места в другое (рис. 10). Игра требует некоторого привыкания. Но, к изумлению исследователей, лучшее решение, которое удалось получить благодаря стратегиям игроков, оказалось эффективнее, чем найденное компьютерным алгоритмом 115. Когда дело касается квантовой интуиции, люди, похоже, дают фору искусственному интеллекту. По крайней мере пока.


Рис. 10. Скриншоты видеоигры «Квантовые ходы»


Сдается мне, нам стоит просто перестать жаловаться друг другу на то, что квантовая механика странная, и привыкнуть к ней. Это развитая технология, бесспорно, но все-таки она отличима от магии.

* * *

Шутка Чеда про магию квантовой механики, сопровождавшаяся пожиманием плечами, наводит меня на мысль, что его не слишком волнует осмысление математики. Но трудно ее не осмыслять. Если вы часто используете математический формализм, то начинаете осознавать, что происходит при вычислениях. Вы не просто смотрите на результат, но еще и видите, как к нему пришли. А человеческий интерес так уж устроен, что мы лучше ладим с абстракциями, если в них есть какая-то фишка.

«У вас есть любимая интерпретация квантовой механики?» – спрашиваю я Чеда.

«По своему темпераменту я из разряда “заткнись-и-считай”, – отвечает он. – Мне всегда казалось, что если ты не в силах придумать эксперимент, который мог бы провести и который дает разные результаты в разных случаях, то выбирать интерпретацию как-то бессмысленно. Интересно поговорить о том, что происходит со всеми этими странными вещами на пути к обычной реальности. Но я оцениваю состояние дел в этой области так: прямо сейчас никто не способен описать вам эксперимент, который вы смогли бы провести и который дал бы вам иной результат – в пользу, скажем, многомировой интерпретации против теории волны-пилота. А в отсутствие такого эксперимента предпочтения, отдаваемые каким-либо из интерпретаций, – вопрос эстетического выбора».

«Но я считаю важным, что люди занимаются всевозможными интерпретациями, поскольку это высвечивает вопросы, которые, думается, стоит задавать. И хотя вы можете объяснить все эксперименты с помощью любой из интерпретаций, некоторые типы экспериментов представляются более естественными в свете определенных типов интерпретаций».

В качестве примера он приводит эксперименты, где отслеживаются кривые, вдоль которых движутся частицы, проходя через двойную щель, – кривые, которые имеют смысл в рамках теории волны-пилота, но бессмысленны, если считать, что волновая функция лишь собирает информацию наблюдателя. Зато эксперименты, в которых копируются и стираются квантовые состояния, проще интерпретируются в терминах передачи информации.

«Почему вокруг столько споров насчет “правильной” интерпретации, если это не привязано к экспериментальным проверкам?» – спрашиваю я.

«Насколько я понимаю, – говорит Чед, – есть раскол между эпистемологическим и онтологическим лагерями. В онтологическом лагере волновая функция считается реальным объектом, который существует и меняется, а в эпистемологическом лагере считается, что на самом деле она лишь описывает, что мы знаем, – просто количественно выражает наше незнание о мире. И кого угодно можно поместить куда-то в непрерывный спектр между этими двумя интерпретациями».

«На одном конце спектра люди находят оскорбительным периодический коллапс. Им кажется безобразным верить в эпистемологический подход. На другом же конце – классический аргумент Эйнштейна “Существует ли Луна, когда на нее никто не смотрит?”».

Эйнштейн был убежден, что квантовая механика неполна. Он считал, что объекты должны иметь однозначные свойства, наблюдает ли кто-то за ними или нет. Аргумент, заключающийся в том, что нелепо думать, будто Луны не существует, когда никто на нее не смотрит, иллюстрирует его позицию[79]. Только помните, что мы и не ожидаем от крупных объектов квантовых свойств из-за декогеренции. Как и кот Шрёдингера, луна Эйнштейна – это преувеличение, призванное иллюстрировать проблему, а не проблема сама по себе.

Перейти на страницу:

Все книги серии Сенсация в науке

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература